Mathematical methods for physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | 45th anniversary edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9781000261127 9781003037460 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442147 | ||
003 | DE-604 | ||
005 | 20211206 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000261127 |9 978-1-00-026112-7 | ||
020 | |a 9781003037460 |9 978-1-00-303746-0 | ||
035 | |a (ZDB-30-PQE)EBC6377807 | ||
035 | |a (ZDB-30-PAD)EBC6377807 | ||
035 | |a (ZDB-89-EBL)EBL6377807 | ||
035 | |a (OCoLC)1202451134 | ||
035 | |a (DE-599)BVBBV047442147 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 530.15 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a PHY 011 |2 stub | ||
100 | 1 | |a Wyld, Henry William, Jr. |d 1928-2013 |e Verfasser |0 (DE-588)1246986086 |4 aut | |
245 | 1 | 0 | |a Mathematical methods for physics |c H.W. Wyld ; edited by Gary Powell |
250 | |a 45th anniversary edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Editor's Preface to the 45th Anniversary Edition -- Preface to the First Edition -- Section I Homogeneous Boundary Value Problems and Special Functions -- Chapter 1 The Partial Differential Equations of Mathematical Physics -- 1.1 Introduction -- 1.2 Heat Conduction and Diffusion -- 1.3 Quantum Mechanics -- 1.4 Waves on Strings and Membranes -- 1.5 Hydrodynamics and Aerodynamics -- 1.6 Acoustic Waves in a Compressible Fluid -- 1.7 Irrotational Flow in an Incompressible Fluid -- 1.8 Electrodynamics -- 1.8.1 Time Independent Phenomena -- 1.8.2 Vacuum Equations -- 1.8.3 General Case -- 1.9 Summary -- Problems -- Chapter 2 Separation of Variables and Ordinary Differential Equations -- 2.1 Introduction -- 2.2 Separation of Variables -- 2.3 Rectangular Coordinates (x, y, z) -- 2.4 Cylindrical Coordinates (r, θ, z) -- 2.5 Spherical Coordinates (r, θ, ?) -- 2.6 Series Solutions of Ordinary Differential Equations: Preliminaries -- 2.7 Expansion About a Regular Singular Point -- 2.8 Sturm-Liouville Eigenvalue Problem -- 2.9 Fourier Series and Integrals -- 2.10 Numerical Solution of Ordinary Differential Equations -- Problems -- Chapter 3 Spherical Harmonics and Applications -- 3.1 Introduction -- 3.2 Series Solution of Legendre's Equation-Legendre Polynomials -- 3.3 Properties of Legendre Polynomials -- 3.4 The Second Solution Ql(x) of Legendre's Equation -- 3.5 Associated Legendre Polynomials -- 3.6 Spherical Harmonics -- 3.7 The Spherical Harmonics Addition Theorem -- 3.8 Multipole Expansions -- 3.9 Laplace's Equation in Spherical Coordinates -- 3.9.1 Interior Problem I, r ≤ a with ψ(a, θ, ϕ)= u(θ, ϕ) given -- 3.9.2 Interior Problem II, r ≤ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.3 Exterior Problem, r ≥ a with ψ(a, θ, ϕ)= u(θ, ϕ) given | |
505 | 8 | |a 3.9.4 Exterior Problem, r ≥ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.5 Region Between Two Spheres, a ≤ r ≤ b with ψ(a, θ, ϕ)=u(θ, ϕ) and ψ(b, θ, ϕ)= v(θ, ϕ) given -- 3.9.6 Notes on Solving Other Boundary Conditions on Regions Between Two Spheres -- 3.10 Conducting Sphere in a Uniform External Electric Field -- 3.11 Flow of an Incompressible Fluid Around a Spherical Obstacle -- Problems -- Chapter 4 Bessel Functions and Applications -- 4.1 Introduction -- 4.2 Series Solutions of Bessel's Equation -- Bessel Functions -- 4.3 Neumann Functions -- 4.4 Small Argument and Asymptotic Expansions -- 4.5 Bessel Functions of Imaginary Argument -- 4.6 Laplace's Equation in Cylindrical Coordinates -- 4.7 Interior of a Cylinder of Finite Length -- 4.8 The Sturm-Liouville Eigenvalue Problem and Application of The Expansion Theorem -- 4.9 Interior of a Cylinder of Finite Length - Continued -- 4.10 Exterior of an Infinitely Long Cylinder -- 4.11 Cylinder in an External Field -- 4.12 Space between Two Infinite Planes -- 4.13 Fourier Bessel Transforms -- 4.14 Space between Two Infinite Planes - Continued -- Problems -- Chapter 5 Normal Mode Eigenvalue Problems -- 5.1 Introduction -- 5.2 Reduction of the Diffusion Equation and Wave Equation to an Eigenvalue Problem -- 5.3 The Vibrating String -- 5.4 The Vibrating Drumhead -- 5.5 Heat Conduction in a Cylinder of Finite Length -- 5.6 Particle in a Cylindrical Box (Quantum Mechanics) -- 5.7 Normal Modes of an Acoustic Resonant Cavity -- 5.8 Acoustic Wave Guide -- Problems -- Chapter 6 Spherical Bessel Functions and Applications -- 6.1 Introduction -- 6.2 Formulas for Spherical Bessel Functions in Terms of Elementary Functions -- 6.3 Eigenvalue Problem and Application of the Expansion Theorem -- 6.4 Expansion of Plane and Spherical Waves in Spherical Coordinates -- 6.5 The Emission of Spherical Waves | |
505 | 8 | |a 6.6 Scattering of Waves by a Sphere -- Problems -- Summary of Part I -- Section II Inhomogeneous Problems, Green's Functions, and Integral Equations -- Chapter 7 Dielectric and Magnetic Media -- 7.1 Introduction -- 7.2 Macroscopic Electrostatics in the Presence of Dielectrics -- 7.3 Boundary Value Problems in Dielectrics -- 7.3.1 Free Charge Distribution ρF Embedded in an Infinite Uniform Dielectric with a Constant Dielectric Constant ε -- 7.3.2 Point Charge in Front of a Semi-infinite Dielectric -- 7.3.3 Dielectric Sphere in a Uniform External Electric Field -- 7.4 Magnetostatics and the Multipole Expansion for the Vector Potential -- 7.5 Magnetic Media -- 7.6 Boundary Value Problems in Magnetic Media -- 7.6.1 Uniformly Magnetized Sphere, M Given -- 7.6.2 Magnetic Sphere in a Uniform External Magnetic Field -- 7.6.3 Long Straight Wire Carrying Current I Parallel to a Semi-infinite Slab of Material of Permeability μ -- Problems -- Chapter 8 Green's Functions: Part One -- 8.1 Introduction -- 8.2 Ordinary Differential Equations -- 8.3 General Theory, Various Boundary Conditions -- 8.4 The Bowed Stretched String -- 8.5 Expansion of Green's Function in Eigenfunctions -- 8.6 Poisson's Equation -- 8.7 Poisson's Equation for All Space -- 8.8 Electrostatics with Boundary Conditions on Surfaces at Finite Distances - The Image Method -- 8.9 Expansion of the Green's Function for the Interior of a Sphere in Series -- 8.10 The Helmholtz Equation - The Forced Drumhead -- 8.11 Eigenfunction Expansion of the Green's Function for the Helmholtz Equation -- Problems -- Chapter 9 Green's Functions: Part Two -- 9.1 Introduction -- 9.2 The Helmholtz Equation for Infinite Regions, Radiation, and the Wave Equation -- Sinusoidal Time Dependence -- 9.3 General Time Dependence -- 9.4 The Wave Equation | |
505 | 8 | |a 9.5 The Wave Equation for All Space, No Boundaries at Finite Distances -- 9.6 Field Due to a Point Source -- 9.6.1 Point Source Moving with Constant Velocity, v < -- c -- 9.6.2 Point Source Moving with Constant Velocity, v > -- c -- 9.7 The Diffusion Equation -- 9.8 The Diffusion Equation for All Space, No Boundaries at Finite Distances -- Problems -- Chapter 10 Integral Equations -- 10.1 Introduction -- 10.2 Quantum Theory of Scattering -- 10.3 Types of Integral Equations -- 10.3.1 First Kind -- 10.3.2 Second Kind -- 10.3.3 Volterra -- 10.3.4 Eigenvalue Problem -- 10.4 Integral Equations with Separable Kernels -- 10.5 Convolution Integral Equations -- 10.6 Iteration - Liouville-Neumann Series -- 10.7 Numerical Solution -- 10.8 Fredholm's Formulas -- 10.9 Conditions for Validity of Fredholm's Formulas -- 10.10 Hilbert-Schmidt Theory -- Problems -- Section III Complex Variable Techniques -- Chapter 11 Complex Variables -- Basic Theory -- 11.1 Introduction -- 11.2 Analytic Functions -- The Cauchy-Riemann Equations -- 11.3 Power Series -- 11.4 Multivalued Functions -- Cuts -- Riemann Sheets -- 11.5 Contour Integrals -- Cauchy's Theorem -- 11.6 Cauchy's Integral Formula -- 11.7 Taylor and Laurent Expansions -- 11.8 Analytic Continuation -- Problems -- Chapter 12 Evaluation of Integrals -- 12.1 Introduction -- 12.2 The Residue Theorem -- 12.3 Rational Functions (−∞, ∞) -- 12.4 Exponential Factors -- Jordan's Lemma -- 12.5 Integrals on the Range (0, ∞) -- 12.6 Angular Integrals -- 12.7 Transforming the Contour -- 12.8 Partial Fraction and Product Expansions -- Problems -- Chapter 13 Dispersion Relations -- 13.1 Introduction -- 13.2 Plemelj Formulas -- Dirac's Formula -- 13.3 Discontinuity Problem -- 13.4 Dispersion Relations -- Spectral Representations -- 13.5 Examples -- 13.6 Integral Equations with Cauchy Kernels -- Problems | |
505 | 8 | |a Chapter 14 Special Functions -- 14.1 Introduction -- 14.2 The Gamma Function -- 14.3 Asymptotic Expansions -- Stirling's Formula -- 14.4 The Hypergeometric Function -- 14.5 Legendre Functions -- 14.6 Bessel Functions -- 14.7 Asymptotic Expansions for Bessel Functions -- Problems -- Chapter 15 Integral Transforms in the Complex Plane -- 15.1 Introduction -- 15.2 The Calculation of Green's Functions by Fourier Transform Methods -- 15.2.1 The Helmholtz Equation -- 15.2.2 The Wave Equation -- 15.2.3 The Klein-Gordon Equation -- 15.3 One-Sided Fourier Transforms -- Laplace Transforms -- 15.4 Linear Differential Equations with Constant Coefficients -- 15.5 Integral Equations of Convolution Type -- 15.6 Mellin Transforms -- 15.7 Partial Differential Equations -- 15.8 The Wiener-Hopf Method -- 15.8.1 Potential Given on Semi-Infinite Plate -- 15.8.2 Diffraction by a Knife Edge -- Problems -- Bibliography -- Index | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Powell, Gary |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Wyld, H. W. |t Mathematical Methods for Physics |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-47708-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-367-47973-2 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844299 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6377807 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734771322880 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wyld, Henry William, Jr. 1928-2013 |
author2 | Powell, Gary |
author2_role | edt |
author2_variant | g p gp |
author_GND | (DE-588)1246986086 |
author_facet | Wyld, Henry William, Jr. 1928-2013 Powell, Gary |
author_role | aut |
author_sort | Wyld, Henry William, Jr. 1928-2013 |
author_variant | h w j w hwj hwjw |
building | Verbundindex |
bvnumber | BV047442147 |
classification_rvk | SK 950 |
classification_tum | PHY 011 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Editor's Preface to the 45th Anniversary Edition -- Preface to the First Edition -- Section I Homogeneous Boundary Value Problems and Special Functions -- Chapter 1 The Partial Differential Equations of Mathematical Physics -- 1.1 Introduction -- 1.2 Heat Conduction and Diffusion -- 1.3 Quantum Mechanics -- 1.4 Waves on Strings and Membranes -- 1.5 Hydrodynamics and Aerodynamics -- 1.6 Acoustic Waves in a Compressible Fluid -- 1.7 Irrotational Flow in an Incompressible Fluid -- 1.8 Electrodynamics -- 1.8.1 Time Independent Phenomena -- 1.8.2 Vacuum Equations -- 1.8.3 General Case -- 1.9 Summary -- Problems -- Chapter 2 Separation of Variables and Ordinary Differential Equations -- 2.1 Introduction -- 2.2 Separation of Variables -- 2.3 Rectangular Coordinates (x, y, z) -- 2.4 Cylindrical Coordinates (r, θ, z) -- 2.5 Spherical Coordinates (r, θ, ?) -- 2.6 Series Solutions of Ordinary Differential Equations: Preliminaries -- 2.7 Expansion About a Regular Singular Point -- 2.8 Sturm-Liouville Eigenvalue Problem -- 2.9 Fourier Series and Integrals -- 2.10 Numerical Solution of Ordinary Differential Equations -- Problems -- Chapter 3 Spherical Harmonics and Applications -- 3.1 Introduction -- 3.2 Series Solution of Legendre's Equation-Legendre Polynomials -- 3.3 Properties of Legendre Polynomials -- 3.4 The Second Solution Ql(x) of Legendre's Equation -- 3.5 Associated Legendre Polynomials -- 3.6 Spherical Harmonics -- 3.7 The Spherical Harmonics Addition Theorem -- 3.8 Multipole Expansions -- 3.9 Laplace's Equation in Spherical Coordinates -- 3.9.1 Interior Problem I, r ≤ a with ψ(a, θ, ϕ)= u(θ, ϕ) given -- 3.9.2 Interior Problem II, r ≤ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.3 Exterior Problem, r ≥ a with ψ(a, θ, ϕ)= u(θ, ϕ) given 3.9.4 Exterior Problem, r ≥ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.5 Region Between Two Spheres, a ≤ r ≤ b with ψ(a, θ, ϕ)=u(θ, ϕ) and ψ(b, θ, ϕ)= v(θ, ϕ) given -- 3.9.6 Notes on Solving Other Boundary Conditions on Regions Between Two Spheres -- 3.10 Conducting Sphere in a Uniform External Electric Field -- 3.11 Flow of an Incompressible Fluid Around a Spherical Obstacle -- Problems -- Chapter 4 Bessel Functions and Applications -- 4.1 Introduction -- 4.2 Series Solutions of Bessel's Equation -- Bessel Functions -- 4.3 Neumann Functions -- 4.4 Small Argument and Asymptotic Expansions -- 4.5 Bessel Functions of Imaginary Argument -- 4.6 Laplace's Equation in Cylindrical Coordinates -- 4.7 Interior of a Cylinder of Finite Length -- 4.8 The Sturm-Liouville Eigenvalue Problem and Application of The Expansion Theorem -- 4.9 Interior of a Cylinder of Finite Length - Continued -- 4.10 Exterior of an Infinitely Long Cylinder -- 4.11 Cylinder in an External Field -- 4.12 Space between Two Infinite Planes -- 4.13 Fourier Bessel Transforms -- 4.14 Space between Two Infinite Planes - Continued -- Problems -- Chapter 5 Normal Mode Eigenvalue Problems -- 5.1 Introduction -- 5.2 Reduction of the Diffusion Equation and Wave Equation to an Eigenvalue Problem -- 5.3 The Vibrating String -- 5.4 The Vibrating Drumhead -- 5.5 Heat Conduction in a Cylinder of Finite Length -- 5.6 Particle in a Cylindrical Box (Quantum Mechanics) -- 5.7 Normal Modes of an Acoustic Resonant Cavity -- 5.8 Acoustic Wave Guide -- Problems -- Chapter 6 Spherical Bessel Functions and Applications -- 6.1 Introduction -- 6.2 Formulas for Spherical Bessel Functions in Terms of Elementary Functions -- 6.3 Eigenvalue Problem and Application of the Expansion Theorem -- 6.4 Expansion of Plane and Spherical Waves in Spherical Coordinates -- 6.5 The Emission of Spherical Waves 6.6 Scattering of Waves by a Sphere -- Problems -- Summary of Part I -- Section II Inhomogeneous Problems, Green's Functions, and Integral Equations -- Chapter 7 Dielectric and Magnetic Media -- 7.1 Introduction -- 7.2 Macroscopic Electrostatics in the Presence of Dielectrics -- 7.3 Boundary Value Problems in Dielectrics -- 7.3.1 Free Charge Distribution ρF Embedded in an Infinite Uniform Dielectric with a Constant Dielectric Constant ε -- 7.3.2 Point Charge in Front of a Semi-infinite Dielectric -- 7.3.3 Dielectric Sphere in a Uniform External Electric Field -- 7.4 Magnetostatics and the Multipole Expansion for the Vector Potential -- 7.5 Magnetic Media -- 7.6 Boundary Value Problems in Magnetic Media -- 7.6.1 Uniformly Magnetized Sphere, M Given -- 7.6.2 Magnetic Sphere in a Uniform External Magnetic Field -- 7.6.3 Long Straight Wire Carrying Current I Parallel to a Semi-infinite Slab of Material of Permeability μ -- Problems -- Chapter 8 Green's Functions: Part One -- 8.1 Introduction -- 8.2 Ordinary Differential Equations -- 8.3 General Theory, Various Boundary Conditions -- 8.4 The Bowed Stretched String -- 8.5 Expansion of Green's Function in Eigenfunctions -- 8.6 Poisson's Equation -- 8.7 Poisson's Equation for All Space -- 8.8 Electrostatics with Boundary Conditions on Surfaces at Finite Distances - The Image Method -- 8.9 Expansion of the Green's Function for the Interior of a Sphere in Series -- 8.10 The Helmholtz Equation - The Forced Drumhead -- 8.11 Eigenfunction Expansion of the Green's Function for the Helmholtz Equation -- Problems -- Chapter 9 Green's Functions: Part Two -- 9.1 Introduction -- 9.2 The Helmholtz Equation for Infinite Regions, Radiation, and the Wave Equation -- Sinusoidal Time Dependence -- 9.3 General Time Dependence -- 9.4 The Wave Equation 9.5 The Wave Equation for All Space, No Boundaries at Finite Distances -- 9.6 Field Due to a Point Source -- 9.6.1 Point Source Moving with Constant Velocity, v < -- c -- 9.6.2 Point Source Moving with Constant Velocity, v > -- c -- 9.7 The Diffusion Equation -- 9.8 The Diffusion Equation for All Space, No Boundaries at Finite Distances -- Problems -- Chapter 10 Integral Equations -- 10.1 Introduction -- 10.2 Quantum Theory of Scattering -- 10.3 Types of Integral Equations -- 10.3.1 First Kind -- 10.3.2 Second Kind -- 10.3.3 Volterra -- 10.3.4 Eigenvalue Problem -- 10.4 Integral Equations with Separable Kernels -- 10.5 Convolution Integral Equations -- 10.6 Iteration - Liouville-Neumann Series -- 10.7 Numerical Solution -- 10.8 Fredholm's Formulas -- 10.9 Conditions for Validity of Fredholm's Formulas -- 10.10 Hilbert-Schmidt Theory -- Problems -- Section III Complex Variable Techniques -- Chapter 11 Complex Variables -- Basic Theory -- 11.1 Introduction -- 11.2 Analytic Functions -- The Cauchy-Riemann Equations -- 11.3 Power Series -- 11.4 Multivalued Functions -- Cuts -- Riemann Sheets -- 11.5 Contour Integrals -- Cauchy's Theorem -- 11.6 Cauchy's Integral Formula -- 11.7 Taylor and Laurent Expansions -- 11.8 Analytic Continuation -- Problems -- Chapter 12 Evaluation of Integrals -- 12.1 Introduction -- 12.2 The Residue Theorem -- 12.3 Rational Functions (−∞, ∞) -- 12.4 Exponential Factors -- Jordan's Lemma -- 12.5 Integrals on the Range (0, ∞) -- 12.6 Angular Integrals -- 12.7 Transforming the Contour -- 12.8 Partial Fraction and Product Expansions -- Problems -- Chapter 13 Dispersion Relations -- 13.1 Introduction -- 13.2 Plemelj Formulas -- Dirac's Formula -- 13.3 Discontinuity Problem -- 13.4 Dispersion Relations -- Spectral Representations -- 13.5 Examples -- 13.6 Integral Equations with Cauchy Kernels -- Problems Chapter 14 Special Functions -- 14.1 Introduction -- 14.2 The Gamma Function -- 14.3 Asymptotic Expansions -- Stirling's Formula -- 14.4 The Hypergeometric Function -- 14.5 Legendre Functions -- 14.6 Bessel Functions -- 14.7 Asymptotic Expansions for Bessel Functions -- Problems -- Chapter 15 Integral Transforms in the Complex Plane -- 15.1 Introduction -- 15.2 The Calculation of Green's Functions by Fourier Transform Methods -- 15.2.1 The Helmholtz Equation -- 15.2.2 The Wave Equation -- 15.2.3 The Klein-Gordon Equation -- 15.3 One-Sided Fourier Transforms -- Laplace Transforms -- 15.4 Linear Differential Equations with Constant Coefficients -- 15.5 Integral Equations of Convolution Type -- 15.6 Mellin Transforms -- 15.7 Partial Differential Equations -- 15.8 The Wiener-Hopf Method -- 15.8.1 Potential Given on Semi-Infinite Plate -- 15.8.2 Diffraction by a Knife Edge -- Problems -- Bibliography -- Index |
ctrlnum | (ZDB-30-PQE)EBC6377807 (ZDB-30-PAD)EBC6377807 (ZDB-89-EBL)EBL6377807 (OCoLC)1202451134 (DE-599)BVBBV047442147 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | 45th anniversary edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10582nmm a2200601zc 4500</leader><controlfield tag="001">BV047442147</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211206 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000261127</subfield><subfield code="9">978-1-00-026112-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003037460</subfield><subfield code="9">978-1-00-303746-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6377807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6377807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6377807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1202451134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442147</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 011</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wyld, Henry William, Jr.</subfield><subfield code="d">1928-2013</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1246986086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods for physics</subfield><subfield code="c">H.W. Wyld ; edited by Gary Powell</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">45th anniversary edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Editor's Preface to the 45th Anniversary Edition -- Preface to the First Edition -- Section I Homogeneous Boundary Value Problems and Special Functions -- Chapter 1 The Partial Differential Equations of Mathematical Physics -- 1.1 Introduction -- 1.2 Heat Conduction and Diffusion -- 1.3 Quantum Mechanics -- 1.4 Waves on Strings and Membranes -- 1.5 Hydrodynamics and Aerodynamics -- 1.6 Acoustic Waves in a Compressible Fluid -- 1.7 Irrotational Flow in an Incompressible Fluid -- 1.8 Electrodynamics -- 1.8.1 Time Independent Phenomena -- 1.8.2 Vacuum Equations -- 1.8.3 General Case -- 1.9 Summary -- Problems -- Chapter 2 Separation of Variables and Ordinary Differential Equations -- 2.1 Introduction -- 2.2 Separation of Variables -- 2.3 Rectangular Coordinates (x, y, z) -- 2.4 Cylindrical Coordinates (r, θ, z) -- 2.5 Spherical Coordinates (r, θ, ?) -- 2.6 Series Solutions of Ordinary Differential Equations: Preliminaries -- 2.7 Expansion About a Regular Singular Point -- 2.8 Sturm-Liouville Eigenvalue Problem -- 2.9 Fourier Series and Integrals -- 2.10 Numerical Solution of Ordinary Differential Equations -- Problems -- Chapter 3 Spherical Harmonics and Applications -- 3.1 Introduction -- 3.2 Series Solution of Legendre's Equation-Legendre Polynomials -- 3.3 Properties of Legendre Polynomials -- 3.4 The Second Solution Ql(x) of Legendre's Equation -- 3.5 Associated Legendre Polynomials -- 3.6 Spherical Harmonics -- 3.7 The Spherical Harmonics Addition Theorem -- 3.8 Multipole Expansions -- 3.9 Laplace's Equation in Spherical Coordinates -- 3.9.1 Interior Problem I, r ≤ a with ψ(a, θ, ϕ)= u(θ, ϕ) given -- 3.9.2 Interior Problem II, r ≤ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.3 Exterior Problem, r ≥ a with ψ(a, θ, ϕ)= u(θ, ϕ) given</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.9.4 Exterior Problem, r ≥ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.5 Region Between Two Spheres, a ≤ r ≤ b with ψ(a, θ, ϕ)=u(θ, ϕ) and ψ(b, θ, ϕ)= v(θ, ϕ) given -- 3.9.6 Notes on Solving Other Boundary Conditions on Regions Between Two Spheres -- 3.10 Conducting Sphere in a Uniform External Electric Field -- 3.11 Flow of an Incompressible Fluid Around a Spherical Obstacle -- Problems -- Chapter 4 Bessel Functions and Applications -- 4.1 Introduction -- 4.2 Series Solutions of Bessel's Equation -- Bessel Functions -- 4.3 Neumann Functions -- 4.4 Small Argument and Asymptotic Expansions -- 4.5 Bessel Functions of Imaginary Argument -- 4.6 Laplace's Equation in Cylindrical Coordinates -- 4.7 Interior of a Cylinder of Finite Length -- 4.8 The Sturm-Liouville Eigenvalue Problem and Application of The Expansion Theorem -- 4.9 Interior of a Cylinder of Finite Length - Continued -- 4.10 Exterior of an Infinitely Long Cylinder -- 4.11 Cylinder in an External Field -- 4.12 Space between Two Infinite Planes -- 4.13 Fourier Bessel Transforms -- 4.14 Space between Two Infinite Planes - Continued -- Problems -- Chapter 5 Normal Mode Eigenvalue Problems -- 5.1 Introduction -- 5.2 Reduction of the Diffusion Equation and Wave Equation to an Eigenvalue Problem -- 5.3 The Vibrating String -- 5.4 The Vibrating Drumhead -- 5.5 Heat Conduction in a Cylinder of Finite Length -- 5.6 Particle in a Cylindrical Box (Quantum Mechanics) -- 5.7 Normal Modes of an Acoustic Resonant Cavity -- 5.8 Acoustic Wave Guide -- Problems -- Chapter 6 Spherical Bessel Functions and Applications -- 6.1 Introduction -- 6.2 Formulas for Spherical Bessel Functions in Terms of Elementary Functions -- 6.3 Eigenvalue Problem and Application of the Expansion Theorem -- 6.4 Expansion of Plane and Spherical Waves in Spherical Coordinates -- 6.5 The Emission of Spherical Waves</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.6 Scattering of Waves by a Sphere -- Problems -- Summary of Part I -- Section II Inhomogeneous Problems, Green's Functions, and Integral Equations -- Chapter 7 Dielectric and Magnetic Media -- 7.1 Introduction -- 7.2 Macroscopic Electrostatics in the Presence of Dielectrics -- 7.3 Boundary Value Problems in Dielectrics -- 7.3.1 Free Charge Distribution ρF Embedded in an Infinite Uniform Dielectric with a Constant Dielectric Constant ε -- 7.3.2 Point Charge in Front of a Semi-infinite Dielectric -- 7.3.3 Dielectric Sphere in a Uniform External Electric Field -- 7.4 Magnetostatics and the Multipole Expansion for the Vector Potential -- 7.5 Magnetic Media -- 7.6 Boundary Value Problems in Magnetic Media -- 7.6.1 Uniformly Magnetized Sphere, M Given -- 7.6.2 Magnetic Sphere in a Uniform External Magnetic Field -- 7.6.3 Long Straight Wire Carrying Current I Parallel to a Semi-infinite Slab of Material of Permeability μ -- Problems -- Chapter 8 Green's Functions: Part One -- 8.1 Introduction -- 8.2 Ordinary Differential Equations -- 8.3 General Theory, Various Boundary Conditions -- 8.4 The Bowed Stretched String -- 8.5 Expansion of Green's Function in Eigenfunctions -- 8.6 Poisson's Equation -- 8.7 Poisson's Equation for All Space -- 8.8 Electrostatics with Boundary Conditions on Surfaces at Finite Distances - The Image Method -- 8.9 Expansion of the Green's Function for the Interior of a Sphere in Series -- 8.10 The Helmholtz Equation - The Forced Drumhead -- 8.11 Eigenfunction Expansion of the Green's Function for the Helmholtz Equation -- Problems -- Chapter 9 Green's Functions: Part Two -- 9.1 Introduction -- 9.2 The Helmholtz Equation for Infinite Regions, Radiation, and the Wave Equation -- Sinusoidal Time Dependence -- 9.3 General Time Dependence -- 9.4 The Wave Equation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.5 The Wave Equation for All Space, No Boundaries at Finite Distances -- 9.6 Field Due to a Point Source -- 9.6.1 Point Source Moving with Constant Velocity, v &lt -- c -- 9.6.2 Point Source Moving with Constant Velocity, v &gt -- c -- 9.7 The Diffusion Equation -- 9.8 The Diffusion Equation for All Space, No Boundaries at Finite Distances -- Problems -- Chapter 10 Integral Equations -- 10.1 Introduction -- 10.2 Quantum Theory of Scattering -- 10.3 Types of Integral Equations -- 10.3.1 First Kind -- 10.3.2 Second Kind -- 10.3.3 Volterra -- 10.3.4 Eigenvalue Problem -- 10.4 Integral Equations with Separable Kernels -- 10.5 Convolution Integral Equations -- 10.6 Iteration - Liouville-Neumann Series -- 10.7 Numerical Solution -- 10.8 Fredholm's Formulas -- 10.9 Conditions for Validity of Fredholm's Formulas -- 10.10 Hilbert-Schmidt Theory -- Problems -- Section III Complex Variable Techniques -- Chapter 11 Complex Variables -- Basic Theory -- 11.1 Introduction -- 11.2 Analytic Functions -- The Cauchy-Riemann Equations -- 11.3 Power Series -- 11.4 Multivalued Functions -- Cuts -- Riemann Sheets -- 11.5 Contour Integrals -- Cauchy's Theorem -- 11.6 Cauchy's Integral Formula -- 11.7 Taylor and Laurent Expansions -- 11.8 Analytic Continuation -- Problems -- Chapter 12 Evaluation of Integrals -- 12.1 Introduction -- 12.2 The Residue Theorem -- 12.3 Rational Functions (−∞, ∞) -- 12.4 Exponential Factors -- Jordan's Lemma -- 12.5 Integrals on the Range (0, ∞) -- 12.6 Angular Integrals -- 12.7 Transforming the Contour -- 12.8 Partial Fraction and Product Expansions -- Problems -- Chapter 13 Dispersion Relations -- 13.1 Introduction -- 13.2 Plemelj Formulas -- Dirac's Formula -- 13.3 Discontinuity Problem -- 13.4 Dispersion Relations -- Spectral Representations -- 13.5 Examples -- 13.6 Integral Equations with Cauchy Kernels -- Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 14 Special Functions -- 14.1 Introduction -- 14.2 The Gamma Function -- 14.3 Asymptotic Expansions -- Stirling's Formula -- 14.4 The Hypergeometric Function -- 14.5 Legendre Functions -- 14.6 Bessel Functions -- 14.7 Asymptotic Expansions for Bessel Functions -- Problems -- Chapter 15 Integral Transforms in the Complex Plane -- 15.1 Introduction -- 15.2 The Calculation of Green's Functions by Fourier Transform Methods -- 15.2.1 The Helmholtz Equation -- 15.2.2 The Wave Equation -- 15.2.3 The Klein-Gordon Equation -- 15.3 One-Sided Fourier Transforms -- Laplace Transforms -- 15.4 Linear Differential Equations with Constant Coefficients -- 15.5 Integral Equations of Convolution Type -- 15.6 Mellin Transforms -- 15.7 Partial Differential Equations -- 15.8 The Wiener-Hopf Method -- 15.8.1 Potential Given on Semi-Infinite Plate -- 15.8.2 Diffraction by a Knife Edge -- Problems -- Bibliography -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Powell, Gary</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Wyld, H. W.</subfield><subfield code="t">Mathematical Methods for Physics</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-47708-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-367-47973-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844299</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6377807</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442147 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000261127 9781003037460 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844299 |
oclc_num | 1202451134 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
spelling | Wyld, Henry William, Jr. 1928-2013 Verfasser (DE-588)1246986086 aut Mathematical methods for physics H.W. Wyld ; edited by Gary Powell 45th anniversary edition Boca Raton ; London ; New York CRC Press 2021 © 2021 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Editor's Preface to the 45th Anniversary Edition -- Preface to the First Edition -- Section I Homogeneous Boundary Value Problems and Special Functions -- Chapter 1 The Partial Differential Equations of Mathematical Physics -- 1.1 Introduction -- 1.2 Heat Conduction and Diffusion -- 1.3 Quantum Mechanics -- 1.4 Waves on Strings and Membranes -- 1.5 Hydrodynamics and Aerodynamics -- 1.6 Acoustic Waves in a Compressible Fluid -- 1.7 Irrotational Flow in an Incompressible Fluid -- 1.8 Electrodynamics -- 1.8.1 Time Independent Phenomena -- 1.8.2 Vacuum Equations -- 1.8.3 General Case -- 1.9 Summary -- Problems -- Chapter 2 Separation of Variables and Ordinary Differential Equations -- 2.1 Introduction -- 2.2 Separation of Variables -- 2.3 Rectangular Coordinates (x, y, z) -- 2.4 Cylindrical Coordinates (r, θ, z) -- 2.5 Spherical Coordinates (r, θ, ?) -- 2.6 Series Solutions of Ordinary Differential Equations: Preliminaries -- 2.7 Expansion About a Regular Singular Point -- 2.8 Sturm-Liouville Eigenvalue Problem -- 2.9 Fourier Series and Integrals -- 2.10 Numerical Solution of Ordinary Differential Equations -- Problems -- Chapter 3 Spherical Harmonics and Applications -- 3.1 Introduction -- 3.2 Series Solution of Legendre's Equation-Legendre Polynomials -- 3.3 Properties of Legendre Polynomials -- 3.4 The Second Solution Ql(x) of Legendre's Equation -- 3.5 Associated Legendre Polynomials -- 3.6 Spherical Harmonics -- 3.7 The Spherical Harmonics Addition Theorem -- 3.8 Multipole Expansions -- 3.9 Laplace's Equation in Spherical Coordinates -- 3.9.1 Interior Problem I, r ≤ a with ψ(a, θ, ϕ)= u(θ, ϕ) given -- 3.9.2 Interior Problem II, r ≤ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.3 Exterior Problem, r ≥ a with ψ(a, θ, ϕ)= u(θ, ϕ) given 3.9.4 Exterior Problem, r ≥ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.5 Region Between Two Spheres, a ≤ r ≤ b with ψ(a, θ, ϕ)=u(θ, ϕ) and ψ(b, θ, ϕ)= v(θ, ϕ) given -- 3.9.6 Notes on Solving Other Boundary Conditions on Regions Between Two Spheres -- 3.10 Conducting Sphere in a Uniform External Electric Field -- 3.11 Flow of an Incompressible Fluid Around a Spherical Obstacle -- Problems -- Chapter 4 Bessel Functions and Applications -- 4.1 Introduction -- 4.2 Series Solutions of Bessel's Equation -- Bessel Functions -- 4.3 Neumann Functions -- 4.4 Small Argument and Asymptotic Expansions -- 4.5 Bessel Functions of Imaginary Argument -- 4.6 Laplace's Equation in Cylindrical Coordinates -- 4.7 Interior of a Cylinder of Finite Length -- 4.8 The Sturm-Liouville Eigenvalue Problem and Application of The Expansion Theorem -- 4.9 Interior of a Cylinder of Finite Length - Continued -- 4.10 Exterior of an Infinitely Long Cylinder -- 4.11 Cylinder in an External Field -- 4.12 Space between Two Infinite Planes -- 4.13 Fourier Bessel Transforms -- 4.14 Space between Two Infinite Planes - Continued -- Problems -- Chapter 5 Normal Mode Eigenvalue Problems -- 5.1 Introduction -- 5.2 Reduction of the Diffusion Equation and Wave Equation to an Eigenvalue Problem -- 5.3 The Vibrating String -- 5.4 The Vibrating Drumhead -- 5.5 Heat Conduction in a Cylinder of Finite Length -- 5.6 Particle in a Cylindrical Box (Quantum Mechanics) -- 5.7 Normal Modes of an Acoustic Resonant Cavity -- 5.8 Acoustic Wave Guide -- Problems -- Chapter 6 Spherical Bessel Functions and Applications -- 6.1 Introduction -- 6.2 Formulas for Spherical Bessel Functions in Terms of Elementary Functions -- 6.3 Eigenvalue Problem and Application of the Expansion Theorem -- 6.4 Expansion of Plane and Spherical Waves in Spherical Coordinates -- 6.5 The Emission of Spherical Waves 6.6 Scattering of Waves by a Sphere -- Problems -- Summary of Part I -- Section II Inhomogeneous Problems, Green's Functions, and Integral Equations -- Chapter 7 Dielectric and Magnetic Media -- 7.1 Introduction -- 7.2 Macroscopic Electrostatics in the Presence of Dielectrics -- 7.3 Boundary Value Problems in Dielectrics -- 7.3.1 Free Charge Distribution ρF Embedded in an Infinite Uniform Dielectric with a Constant Dielectric Constant ε -- 7.3.2 Point Charge in Front of a Semi-infinite Dielectric -- 7.3.3 Dielectric Sphere in a Uniform External Electric Field -- 7.4 Magnetostatics and the Multipole Expansion for the Vector Potential -- 7.5 Magnetic Media -- 7.6 Boundary Value Problems in Magnetic Media -- 7.6.1 Uniformly Magnetized Sphere, M Given -- 7.6.2 Magnetic Sphere in a Uniform External Magnetic Field -- 7.6.3 Long Straight Wire Carrying Current I Parallel to a Semi-infinite Slab of Material of Permeability μ -- Problems -- Chapter 8 Green's Functions: Part One -- 8.1 Introduction -- 8.2 Ordinary Differential Equations -- 8.3 General Theory, Various Boundary Conditions -- 8.4 The Bowed Stretched String -- 8.5 Expansion of Green's Function in Eigenfunctions -- 8.6 Poisson's Equation -- 8.7 Poisson's Equation for All Space -- 8.8 Electrostatics with Boundary Conditions on Surfaces at Finite Distances - The Image Method -- 8.9 Expansion of the Green's Function for the Interior of a Sphere in Series -- 8.10 The Helmholtz Equation - The Forced Drumhead -- 8.11 Eigenfunction Expansion of the Green's Function for the Helmholtz Equation -- Problems -- Chapter 9 Green's Functions: Part Two -- 9.1 Introduction -- 9.2 The Helmholtz Equation for Infinite Regions, Radiation, and the Wave Equation -- Sinusoidal Time Dependence -- 9.3 General Time Dependence -- 9.4 The Wave Equation 9.5 The Wave Equation for All Space, No Boundaries at Finite Distances -- 9.6 Field Due to a Point Source -- 9.6.1 Point Source Moving with Constant Velocity, v < -- c -- 9.6.2 Point Source Moving with Constant Velocity, v > -- c -- 9.7 The Diffusion Equation -- 9.8 The Diffusion Equation for All Space, No Boundaries at Finite Distances -- Problems -- Chapter 10 Integral Equations -- 10.1 Introduction -- 10.2 Quantum Theory of Scattering -- 10.3 Types of Integral Equations -- 10.3.1 First Kind -- 10.3.2 Second Kind -- 10.3.3 Volterra -- 10.3.4 Eigenvalue Problem -- 10.4 Integral Equations with Separable Kernels -- 10.5 Convolution Integral Equations -- 10.6 Iteration - Liouville-Neumann Series -- 10.7 Numerical Solution -- 10.8 Fredholm's Formulas -- 10.9 Conditions for Validity of Fredholm's Formulas -- 10.10 Hilbert-Schmidt Theory -- Problems -- Section III Complex Variable Techniques -- Chapter 11 Complex Variables -- Basic Theory -- 11.1 Introduction -- 11.2 Analytic Functions -- The Cauchy-Riemann Equations -- 11.3 Power Series -- 11.4 Multivalued Functions -- Cuts -- Riemann Sheets -- 11.5 Contour Integrals -- Cauchy's Theorem -- 11.6 Cauchy's Integral Formula -- 11.7 Taylor and Laurent Expansions -- 11.8 Analytic Continuation -- Problems -- Chapter 12 Evaluation of Integrals -- 12.1 Introduction -- 12.2 The Residue Theorem -- 12.3 Rational Functions (−∞, ∞) -- 12.4 Exponential Factors -- Jordan's Lemma -- 12.5 Integrals on the Range (0, ∞) -- 12.6 Angular Integrals -- 12.7 Transforming the Contour -- 12.8 Partial Fraction and Product Expansions -- Problems -- Chapter 13 Dispersion Relations -- 13.1 Introduction -- 13.2 Plemelj Formulas -- Dirac's Formula -- 13.3 Discontinuity Problem -- 13.4 Dispersion Relations -- Spectral Representations -- 13.5 Examples -- 13.6 Integral Equations with Cauchy Kernels -- Problems Chapter 14 Special Functions -- 14.1 Introduction -- 14.2 The Gamma Function -- 14.3 Asymptotic Expansions -- Stirling's Formula -- 14.4 The Hypergeometric Function -- 14.5 Legendre Functions -- 14.6 Bessel Functions -- 14.7 Asymptotic Expansions for Bessel Functions -- Problems -- Chapter 15 Integral Transforms in the Complex Plane -- 15.1 Introduction -- 15.2 The Calculation of Green's Functions by Fourier Transform Methods -- 15.2.1 The Helmholtz Equation -- 15.2.2 The Wave Equation -- 15.2.3 The Klein-Gordon Equation -- 15.3 One-Sided Fourier Transforms -- Laplace Transforms -- 15.4 Linear Differential Equations with Constant Coefficients -- 15.5 Integral Equations of Convolution Type -- 15.6 Mellin Transforms -- 15.7 Partial Differential Equations -- 15.8 The Wiener-Hopf Method -- 15.8.1 Potential Given on Semi-Infinite Plate -- 15.8.2 Diffraction by a Knife Edge -- Problems -- Bibliography -- Index Mathematical physics Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Physik (DE-588)4045956-1 s Mathematische Methode (DE-588)4155620-3 s DE-604 Mathematische Physik (DE-588)4037952-8 s Powell, Gary edt Erscheint auch als Wyld, H. W. Mathematical Methods for Physics Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-367-47708-0 Erscheint auch als Druck-Ausgabe, Paperback 978-0-367-47973-2 |
spellingShingle | Wyld, Henry William, Jr. 1928-2013 Mathematical methods for physics Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Editor's Preface to the 45th Anniversary Edition -- Preface to the First Edition -- Section I Homogeneous Boundary Value Problems and Special Functions -- Chapter 1 The Partial Differential Equations of Mathematical Physics -- 1.1 Introduction -- 1.2 Heat Conduction and Diffusion -- 1.3 Quantum Mechanics -- 1.4 Waves on Strings and Membranes -- 1.5 Hydrodynamics and Aerodynamics -- 1.6 Acoustic Waves in a Compressible Fluid -- 1.7 Irrotational Flow in an Incompressible Fluid -- 1.8 Electrodynamics -- 1.8.1 Time Independent Phenomena -- 1.8.2 Vacuum Equations -- 1.8.3 General Case -- 1.9 Summary -- Problems -- Chapter 2 Separation of Variables and Ordinary Differential Equations -- 2.1 Introduction -- 2.2 Separation of Variables -- 2.3 Rectangular Coordinates (x, y, z) -- 2.4 Cylindrical Coordinates (r, θ, z) -- 2.5 Spherical Coordinates (r, θ, ?) -- 2.6 Series Solutions of Ordinary Differential Equations: Preliminaries -- 2.7 Expansion About a Regular Singular Point -- 2.8 Sturm-Liouville Eigenvalue Problem -- 2.9 Fourier Series and Integrals -- 2.10 Numerical Solution of Ordinary Differential Equations -- Problems -- Chapter 3 Spherical Harmonics and Applications -- 3.1 Introduction -- 3.2 Series Solution of Legendre's Equation-Legendre Polynomials -- 3.3 Properties of Legendre Polynomials -- 3.4 The Second Solution Ql(x) of Legendre's Equation -- 3.5 Associated Legendre Polynomials -- 3.6 Spherical Harmonics -- 3.7 The Spherical Harmonics Addition Theorem -- 3.8 Multipole Expansions -- 3.9 Laplace's Equation in Spherical Coordinates -- 3.9.1 Interior Problem I, r ≤ a with ψ(a, θ, ϕ)= u(θ, ϕ) given -- 3.9.2 Interior Problem II, r ≤ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.3 Exterior Problem, r ≥ a with ψ(a, θ, ϕ)= u(θ, ϕ) given 3.9.4 Exterior Problem, r ≥ a with ∂ψ/∂rr=a = v(θ, ϕ) given -- 3.9.5 Region Between Two Spheres, a ≤ r ≤ b with ψ(a, θ, ϕ)=u(θ, ϕ) and ψ(b, θ, ϕ)= v(θ, ϕ) given -- 3.9.6 Notes on Solving Other Boundary Conditions on Regions Between Two Spheres -- 3.10 Conducting Sphere in a Uniform External Electric Field -- 3.11 Flow of an Incompressible Fluid Around a Spherical Obstacle -- Problems -- Chapter 4 Bessel Functions and Applications -- 4.1 Introduction -- 4.2 Series Solutions of Bessel's Equation -- Bessel Functions -- 4.3 Neumann Functions -- 4.4 Small Argument and Asymptotic Expansions -- 4.5 Bessel Functions of Imaginary Argument -- 4.6 Laplace's Equation in Cylindrical Coordinates -- 4.7 Interior of a Cylinder of Finite Length -- 4.8 The Sturm-Liouville Eigenvalue Problem and Application of The Expansion Theorem -- 4.9 Interior of a Cylinder of Finite Length - Continued -- 4.10 Exterior of an Infinitely Long Cylinder -- 4.11 Cylinder in an External Field -- 4.12 Space between Two Infinite Planes -- 4.13 Fourier Bessel Transforms -- 4.14 Space between Two Infinite Planes - Continued -- Problems -- Chapter 5 Normal Mode Eigenvalue Problems -- 5.1 Introduction -- 5.2 Reduction of the Diffusion Equation and Wave Equation to an Eigenvalue Problem -- 5.3 The Vibrating String -- 5.4 The Vibrating Drumhead -- 5.5 Heat Conduction in a Cylinder of Finite Length -- 5.6 Particle in a Cylindrical Box (Quantum Mechanics) -- 5.7 Normal Modes of an Acoustic Resonant Cavity -- 5.8 Acoustic Wave Guide -- Problems -- Chapter 6 Spherical Bessel Functions and Applications -- 6.1 Introduction -- 6.2 Formulas for Spherical Bessel Functions in Terms of Elementary Functions -- 6.3 Eigenvalue Problem and Application of the Expansion Theorem -- 6.4 Expansion of Plane and Spherical Waves in Spherical Coordinates -- 6.5 The Emission of Spherical Waves 6.6 Scattering of Waves by a Sphere -- Problems -- Summary of Part I -- Section II Inhomogeneous Problems, Green's Functions, and Integral Equations -- Chapter 7 Dielectric and Magnetic Media -- 7.1 Introduction -- 7.2 Macroscopic Electrostatics in the Presence of Dielectrics -- 7.3 Boundary Value Problems in Dielectrics -- 7.3.1 Free Charge Distribution ρF Embedded in an Infinite Uniform Dielectric with a Constant Dielectric Constant ε -- 7.3.2 Point Charge in Front of a Semi-infinite Dielectric -- 7.3.3 Dielectric Sphere in a Uniform External Electric Field -- 7.4 Magnetostatics and the Multipole Expansion for the Vector Potential -- 7.5 Magnetic Media -- 7.6 Boundary Value Problems in Magnetic Media -- 7.6.1 Uniformly Magnetized Sphere, M Given -- 7.6.2 Magnetic Sphere in a Uniform External Magnetic Field -- 7.6.3 Long Straight Wire Carrying Current I Parallel to a Semi-infinite Slab of Material of Permeability μ -- Problems -- Chapter 8 Green's Functions: Part One -- 8.1 Introduction -- 8.2 Ordinary Differential Equations -- 8.3 General Theory, Various Boundary Conditions -- 8.4 The Bowed Stretched String -- 8.5 Expansion of Green's Function in Eigenfunctions -- 8.6 Poisson's Equation -- 8.7 Poisson's Equation for All Space -- 8.8 Electrostatics with Boundary Conditions on Surfaces at Finite Distances - The Image Method -- 8.9 Expansion of the Green's Function for the Interior of a Sphere in Series -- 8.10 The Helmholtz Equation - The Forced Drumhead -- 8.11 Eigenfunction Expansion of the Green's Function for the Helmholtz Equation -- Problems -- Chapter 9 Green's Functions: Part Two -- 9.1 Introduction -- 9.2 The Helmholtz Equation for Infinite Regions, Radiation, and the Wave Equation -- Sinusoidal Time Dependence -- 9.3 General Time Dependence -- 9.4 The Wave Equation 9.5 The Wave Equation for All Space, No Boundaries at Finite Distances -- 9.6 Field Due to a Point Source -- 9.6.1 Point Source Moving with Constant Velocity, v < -- c -- 9.6.2 Point Source Moving with Constant Velocity, v > -- c -- 9.7 The Diffusion Equation -- 9.8 The Diffusion Equation for All Space, No Boundaries at Finite Distances -- Problems -- Chapter 10 Integral Equations -- 10.1 Introduction -- 10.2 Quantum Theory of Scattering -- 10.3 Types of Integral Equations -- 10.3.1 First Kind -- 10.3.2 Second Kind -- 10.3.3 Volterra -- 10.3.4 Eigenvalue Problem -- 10.4 Integral Equations with Separable Kernels -- 10.5 Convolution Integral Equations -- 10.6 Iteration - Liouville-Neumann Series -- 10.7 Numerical Solution -- 10.8 Fredholm's Formulas -- 10.9 Conditions for Validity of Fredholm's Formulas -- 10.10 Hilbert-Schmidt Theory -- Problems -- Section III Complex Variable Techniques -- Chapter 11 Complex Variables -- Basic Theory -- 11.1 Introduction -- 11.2 Analytic Functions -- The Cauchy-Riemann Equations -- 11.3 Power Series -- 11.4 Multivalued Functions -- Cuts -- Riemann Sheets -- 11.5 Contour Integrals -- Cauchy's Theorem -- 11.6 Cauchy's Integral Formula -- 11.7 Taylor and Laurent Expansions -- 11.8 Analytic Continuation -- Problems -- Chapter 12 Evaluation of Integrals -- 12.1 Introduction -- 12.2 The Residue Theorem -- 12.3 Rational Functions (−∞, ∞) -- 12.4 Exponential Factors -- Jordan's Lemma -- 12.5 Integrals on the Range (0, ∞) -- 12.6 Angular Integrals -- 12.7 Transforming the Contour -- 12.8 Partial Fraction and Product Expansions -- Problems -- Chapter 13 Dispersion Relations -- 13.1 Introduction -- 13.2 Plemelj Formulas -- Dirac's Formula -- 13.3 Discontinuity Problem -- 13.4 Dispersion Relations -- Spectral Representations -- 13.5 Examples -- 13.6 Integral Equations with Cauchy Kernels -- Problems Chapter 14 Special Functions -- 14.1 Introduction -- 14.2 The Gamma Function -- 14.3 Asymptotic Expansions -- Stirling's Formula -- 14.4 The Hypergeometric Function -- 14.5 Legendre Functions -- 14.6 Bessel Functions -- 14.7 Asymptotic Expansions for Bessel Functions -- Problems -- Chapter 15 Integral Transforms in the Complex Plane -- 15.1 Introduction -- 15.2 The Calculation of Green's Functions by Fourier Transform Methods -- 15.2.1 The Helmholtz Equation -- 15.2.2 The Wave Equation -- 15.2.3 The Klein-Gordon Equation -- 15.3 One-Sided Fourier Transforms -- Laplace Transforms -- 15.4 Linear Differential Equations with Constant Coefficients -- 15.5 Integral Equations of Convolution Type -- 15.6 Mellin Transforms -- 15.7 Partial Differential Equations -- 15.8 The Wiener-Hopf Method -- 15.8.1 Potential Given on Semi-Infinite Plate -- 15.8.2 Diffraction by a Knife Edge -- Problems -- Bibliography -- Index Mathematical physics Mathematische Methode (DE-588)4155620-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Physik (DE-588)4045956-1 gnd |
subject_GND | (DE-588)4155620-3 (DE-588)4037952-8 (DE-588)4045956-1 |
title | Mathematical methods for physics |
title_auth | Mathematical methods for physics |
title_exact_search | Mathematical methods for physics |
title_exact_search_txtP | Mathematical methods for physics |
title_full | Mathematical methods for physics H.W. Wyld ; edited by Gary Powell |
title_fullStr | Mathematical methods for physics H.W. Wyld ; edited by Gary Powell |
title_full_unstemmed | Mathematical methods for physics H.W. Wyld ; edited by Gary Powell |
title_short | Mathematical methods for physics |
title_sort | mathematical methods for physics |
topic | Mathematical physics Mathematische Methode (DE-588)4155620-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Physik (DE-588)4045956-1 gnd |
topic_facet | Mathematical physics Mathematische Methode Mathematische Physik Physik |
work_keys_str_mv | AT wyldhenrywilliamjr mathematicalmethodsforphysics AT powellgary mathematicalmethodsforphysics |