Induction Machines Handbook: Steady State Modeling and Performance
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
Taylor & Francis Group
2020
|
Ausgabe: | 3rd ed |
Schriftenreihe: | Electric Power Engineering Ser
|
Schlagworte: | |
Online-Zugang: | FHI01 URL des Erstveröffentlichers |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xix, 423 Seiten) |
ISBN: | 9781000056730 9781003033417 |
DOI: | 10.1201/9781003033417 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441680 | ||
003 | DE-604 | ||
005 | 20220222 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781000056730 |9 978-1-00-005673-0 | ||
020 | |a 9781003033417 |9 978-1-003-03341-7 | ||
024 | 7 | |a 10.1201/9781003033417 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6209724 | ||
035 | |a (ZDB-30-PAD)EBC6209724 | ||
035 | |a (ZDB-89-EBL)EBL6209724 | ||
035 | |a (OCoLC)1156394977 | ||
035 | |a (DE-599)BVBBV047441680 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 621.34 | |
084 | |a ZN 8250 |0 (DE-625)157603: |2 rvk | ||
100 | 1 | |a Boldea, Ion |e Verfasser |4 aut | |
245 | 1 | 0 | |a Induction Machines Handbook |b Steady State Modeling and Performance |
250 | |a 3rd ed | ||
264 | 1 | |a Milton |b Taylor & Francis Group |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (xix, 423 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Electric Power Engineering Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Chapter 1 Induction Machines: An Introduction -- 1.1 Electric Energy and Induction Motors -- 1.2 A Historical Touch -- 1.3 Induction Machines in Applications -- 1.4 Conclusion -- References -- Chapter 2 Construction Aspects and Operation Principles -- 2.1 Construction Aspects of Rotary IMs -- 2.1.1 The Magnetic Cores -- 2.1.2 Slot Geometry -- 2.1.3 IM Windings -- 2.1.4 Cage Rotor Windings -- 2.2 Construction Aspects of Linear Induction Motors -- 2.3 Operation Principles of IMs -- 2.4 Summary -- References -- Chapter 3 Magnetic, Electric, and Insulation Materials for IM -- 3.1 Introduction -- 3.2 Soft Magnetic Materials -- 3.3 Core(Magnetic) Losses -- 3.4 Electrical Conductors -- 3.5 Insulation Materials -- 3.5.1 Random-Wound IM Insulation -- 3.5.2 Form-Wound Windings -- 3.6 Summary -- References -- Chapter 4 Induction Machine Windings and Their mmfs -- 4.1 Introduction -- 4.2 The Ideal Travelling mmf of A.C. Windings -- 4.3 A Primitive Single-Layer Winding -- 4.4 A Primitive Two-Layer Chorded Winding -- 4.5 The mmf Harmonics for Integer q -- 4.6 Rules for Designing Practical A.C. Windings -- 4.7 Basic Fractional q Three-Phase A.C. Windings -- 4.8 Basic Pole-Changing Three-Phase A.C. Windings -- 4.9 Two-Phase A.C. Windings -- 4.10 Pole Changing with Single-Phase Supply Induction Motors -- 4.11 Special Topics on A.C. Windings -- 4.12 The mmf of Rotor Windings -- 4.13 The "Skewing" mmf Concept -- 4.14 Multiphase and Multilayer Tooth-Wound Coil Windings -- 4.15 Summary -- References -- Chapter 5 The Magnetisation Curve and Inductance -- 5.1 Introduction -- 5.2 Equivalent Airgap to Account for Slotting -- 5.3 Effective Stack Length -- 5.4 The Basic Magnetisation Curve | |
505 | 8 | |a 5.4.1 The Magnetisation Curve via the Basic Magnetic Circuit -- 5.4.2 Teeth Deuflxing by Slots -- 5.4.3 Third Harmonic Flux Modulation due to Saturation -- 5.4.4 The Analytical Iterative Model (AIM) -- 5.4.4.1 Magnetic Potential, A, Solution -- 5.4.4.2 The Computer Program -- 5.4.4.3 Model Validation on No Load -- 5.5 The EMF in an A.C. Winding -- 5.6 The Magnetisation Inductance -- 5.7 Saturated Magnetisation Inductance by Curve Fitting -- 5.8 Summary -- References -- Chapter 6 Leakage Inductances and Resistances -- 6.1 Leakage Fields -- 6.2 Differential Leakage Inductances -- 6.3 Rectangular Slot Leakage Inductance/Single Layer -- 6.4 Rectangular Slot Leakage Inductance/Two Layers -- 6.5 Rounded Shape Slot Leakage Inductance/Two Layers -- 6.6 Zig-Zag Airgap Leakage Inductances -- 6.7 End-Connection Leakage Inductance -- 6.8 Skewing Leakage Inductance -- 6.9 Rotor Bar and End Ring Equivalent Leakage Inductance -- 6.10 Basic Phase Resistance -- 6.11 The Cage Rotor Resistance -- 6.12 Simplified Leakage Saturation Corrections -- 6.13 Reducing the Rotor to Stator -- 6.14 The Brushless Doubly Fed Induction Machine (BDFIM) -- 6.15 Summary -- References -- Chapter 7 Steady-State Equivalent Circuit and Performance -- 7.1 Basic Steady-State Equivalent Circuit -- 7.2 Classification of Operation Modes -- 7.3 Ideal No-Load Operation -- 7.4 Short-Circuit (Zero Speed) Operation -- 7.5 No-Load Motor Operation -- 7.6 The Motor Mode of Operation -- 7.7 Generating to Power Grid -- 7.8 Autonomous Induction Generator Mode -- 7.9 The Electromagnetic Torque -- 7.10 Efficiency and Power Factor -- 7.11 Phasor Diagrams: Standard and New -- 7.12 Alternative Equivalent Circuits -- 7.13 Unbalanced Supply Voltages -- 7.14 One Stator Phase Is Open -- 7.15 Unbalanced Rotor Windings -- 7.16 One Rotor Phase Is Open -- 7.17 When Voltage Varies Around Rated Value | |
505 | 8 | |a 7.18 When Stator Voltages Have Time Harmonics -- 7.19 Equivalent Circuits for Brushless Doubly Fed IMs -- 7.20 Summary -- References -- Chapter 8 Starting and Speed Control Methods -- 8.1 Starting of Cage-Rotor Induction Motors -- 8.1.1 Direct Starting -- 8.1.2 Autotransformer Starting -- 8.1.3 Wye-Delta Starting -- 8.1.4 Softstarting -- 8.2 Starting of Wound-Rotor Induction Motors -- 8.3 Speed Control Methods for Cage-Rotor Induction Motors -- 8.3.1 The Voltage Reduction Method -- 8.3.2 The Pole-Changing Method -- 8.4 Variable Frequency Methods -- 8.4.1 V/f Scalar Control Characteristics -- 8.4.2 Rotor Flux Vector Control -- 8.5 Speed Control Methods for Wound-Rotor IMs -- 8.5.1 Additional Voltage to the Rotor (the Doubly Fed Machine) -- 8.6 Control Basics of DFIMs -- 8.7 Summary -- References -- Chapter 9 Skin and On-Load Saturation Effects -- 9.1 Introduction -- 9.2 The Skin Effect -- 9.2.1 Single Conductor in Rectangular Slot -- 9.2.2 Multiple Conductors in Rectangular Slots: Series Connection -- 9.2.3 Multiple Conductors in Slot: Parallel Connection -- 9.2.4 The Skin Effect in the End Turns -- 9.3 Skin Effects by the Multilayer Approach -- 9.4 Skin Effect in the End Rings via the Multilayer Approach -- 9.5 The Double Cage Behaves Like a Deep Bar Cage -- 9.6 Leakage Flux Path Saturation - A Simplified Approach -- 9.7 Leakage Saturation and Skin Effects - A Comprehensive Analytical Approach -- 9.7.1 The Skewing mmf -- 9.7.2 Flux in the Cross-Section Marked by AB (Figure 9.25) -- 9.7.3 The Stator Tooth Top Saturates First -- 9.7.4 Unsaturated Rotor Tooth Top -- 9.7.5 Saturated Rotor Tooth Tip -- 9.7.6 The Case of Closed Rotor Slots -- 9.7.7 The Algorithm -- 9.8 The FEM Approach -- 9.9 Magnetic Saturation Effects on Current/Slip and Torque/Slip Curves -- 9.10 Rotor Slot Leakage Reactance Saturation Effects -- 9.11 Solid Rotor Effects | |
505 | 8 | |a 9.12 Standardised Line-Start Induction Motors -- 9.13 Summary -- References -- Chapter 10 Airgap Field Space Harmonics, Parasitic Torques, Radial Forces, and Noise Basics -- 10.1 Stator mmf Produced Airgap Flux Harmonics -- 10.2 Airgap Field of a Squirrel-Cage Winding -- 10.3 Airgap Permeance Harmonics -- 10.4 Leakage Saturation Influence on Airgap Permeance -- 10.5 Main Flux Saturation Influence on Airgap Permeance -- 10.6 The Harmonics-Rich Airgap Flux Density -- 10.7 The Eccentricity Influence on Airgap Magnetic Permeance -- 10.8 Interactions of mmf (or Step) Harmonics and Airgap Magnetic Permeance Harmonics -- 10.9 Parasitic Torques -- 10.9.1 When Do Asynchronous Parasitic Torques Occur? -- 10.9.2 Synchronous Parasitic Torques -- 10.9.3 Leakage Saturation Influence on Synchronous Torques -- 10.9.4 The Secondary Armature Reaction -- 10.9.5 Notable Differences between Theoretical and Experimental Torque/Speed Curves -- 10.9.6 A Case Study: N[sub(s)]/N[sub(r)]= 36/28, 2p[sub(1)]= 4, y/& -- #964 -- = 1, and 7/9 -- m = 3 [7] -- 10.9.7 Evaluation of Parasitic Torques by Tests (after Ref. [1]) -- 10.10 Radial Forces and Electromagnetic Noise Basics -- 10.10.1 Constant Airgap (No Slotting, No Eccentricity) -- 10.10.2 Influence of Stator/Rotor Slot Openings, Airgap Deflection, and Saturation -- 10.10.3 Influence of Rotor Eccentricity on Noise -- 10.10.4 Parallel Stator Windings -- 10.10.5 Slip-Ring Induction Motors -- 10.10.6 Mechanical Resonance Stator Frequencies -- 10.11 Electromagnetic Vibration: A Practical View -- 10.12 Summary -- References -- Chapter 11 Losses in Induction Machines -- 11.1 Loss Classifications -- 11.2 Fundamental Electromagnetic Losses -- 11.3 No-Load Space Harmonics (Stray No-Load) Losses in Nonskewed IMs -- 11.3.1 No-Load Surface Core Losses -- 11.3.2 No-Load Tooth Flux Pulsation Losses | |
505 | 8 | |a 11.3.3 No-Load Tooth Flux Pulsation Cage Losses -- 11.4 Load Space Harmonics (Stray Load) Losses in Nonskewed IMs -- 11.5 Flux Pulsation (Stray) Losses in Skewed Insulated Bars -- 11.6 Interbar Current Losses in Uninsulated Skewed Rotor Cages -- 11.7 No-Load Rotor Skewed Uninsulated Cage Losses -- 11.8 Load Rotor Skewed Uninsulated Cage Losses -- 11.9 Rules to Reduce Full-Load Stray (Space Harmonics) Losses -- 11.10 High-Frequency Time Harmonics Losses -- 11.10.1 Conductor Losses -- 11.10.2 Core Losses -- 11.10.3 Total Time Harmonics Losses -- 11.11 Computation of Time-Harmonics Conductor Losses -- 11.12 Time-Harmonics Interbar Rotor Current Losses -- 11.13 Computation of Time-Harmonic Core Losses -- 11.13.1 Slot Wall Core Losses -- 11.13.2 Zig-Zag Rotor Surface Losses -- 11.14 Loss Computation by FEM Basics -- 11.15 Summary -- References -- Chapter 12 Thermal Modelling and Cooling -- 12.1 Introduction -- 12.2 Some Air Cooling Methods for IMs -- 12.3 Conduction Heat Transfer -- 12.4 Convection Heat Transfer -- 12.5 Heat Transfer by Radiation -- 12.6 Heat Transport (Thermal Transients) in a Homogenous Body -- 12.7 Induction Motor Thermal Transients at Stall -- 12.8 Intermittent Operation -- 12.9 Temperature Rise (t[sub(ON)]) and Fall (t[sub(OFF)]) Times -- 12.10 More Realistic Thermal Equivalent Circuits for IMs -- 12.11 A Detailed Thermal Equivalent Circuit for Transients -- 12.12 Thermal Equivalent Circuit Identification -- 12.13 Thermal Analysis through FEM -- 12.14 Summary -- References -- Chapter 13 Single-Phase Induction Machines: The Basics -- 13.1 Introduction -- 13.2 Split-Phase Induction Motors -- 13.3 Capacitor Induction Motors -- 13.3.1 Capacitor-Start Induction Motors -- 13.3.2 The Two-Value Capacitor Induction Motor -- 13.3.3 Permanent-Split Capacitor Induction Motors -- 13.3.4 Tapped-Winding Capacitor Induction Motors | |
505 | 8 | |a 13.3.5 Split-Phase Capacitor Induction Motors | |
650 | 4 | |a Electric machinery, Induction-Handbooks, manuals, etc | |
650 | 0 | 7 | |a Asynchronmotor |0 (DE-588)4068900-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Induktion |0 (DE-588)4026765-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asynchronmaschine |0 (DE-588)4003345-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Asynchronmaschine |0 (DE-588)4003345-4 |D s |
689 | 0 | 1 | |a Asynchronmotor |0 (DE-588)4068900-1 |D s |
689 | 0 | 2 | |a Induktion |0 (DE-588)4026765-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Boldea, Ion |t Induction Machines Handbook |d Milton : Taylor & Francis Group,c2020 |z 9780367466121 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003033417 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-7-TFC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032843832 | ||
966 | e | |u https://doi.org/10.1201/9781003033417 |l FHI01 |p ZDB-7-TFC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734629765121 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Boldea, Ion |
author_facet | Boldea, Ion |
author_role | aut |
author_sort | Boldea, Ion |
author_variant | i b ib |
building | Verbundindex |
bvnumber | BV047441680 |
classification_rvk | ZN 8250 |
collection | ZDB-30-PQE ZDB-7-TFC |
contents | Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Chapter 1 Induction Machines: An Introduction -- 1.1 Electric Energy and Induction Motors -- 1.2 A Historical Touch -- 1.3 Induction Machines in Applications -- 1.4 Conclusion -- References -- Chapter 2 Construction Aspects and Operation Principles -- 2.1 Construction Aspects of Rotary IMs -- 2.1.1 The Magnetic Cores -- 2.1.2 Slot Geometry -- 2.1.3 IM Windings -- 2.1.4 Cage Rotor Windings -- 2.2 Construction Aspects of Linear Induction Motors -- 2.3 Operation Principles of IMs -- 2.4 Summary -- References -- Chapter 3 Magnetic, Electric, and Insulation Materials for IM -- 3.1 Introduction -- 3.2 Soft Magnetic Materials -- 3.3 Core(Magnetic) Losses -- 3.4 Electrical Conductors -- 3.5 Insulation Materials -- 3.5.1 Random-Wound IM Insulation -- 3.5.2 Form-Wound Windings -- 3.6 Summary -- References -- Chapter 4 Induction Machine Windings and Their mmfs -- 4.1 Introduction -- 4.2 The Ideal Travelling mmf of A.C. Windings -- 4.3 A Primitive Single-Layer Winding -- 4.4 A Primitive Two-Layer Chorded Winding -- 4.5 The mmf Harmonics for Integer q -- 4.6 Rules for Designing Practical A.C. Windings -- 4.7 Basic Fractional q Three-Phase A.C. Windings -- 4.8 Basic Pole-Changing Three-Phase A.C. Windings -- 4.9 Two-Phase A.C. Windings -- 4.10 Pole Changing with Single-Phase Supply Induction Motors -- 4.11 Special Topics on A.C. Windings -- 4.12 The mmf of Rotor Windings -- 4.13 The "Skewing" mmf Concept -- 4.14 Multiphase and Multilayer Tooth-Wound Coil Windings -- 4.15 Summary -- References -- Chapter 5 The Magnetisation Curve and Inductance -- 5.1 Introduction -- 5.2 Equivalent Airgap to Account for Slotting -- 5.3 Effective Stack Length -- 5.4 The Basic Magnetisation Curve 5.4.1 The Magnetisation Curve via the Basic Magnetic Circuit -- 5.4.2 Teeth Deuflxing by Slots -- 5.4.3 Third Harmonic Flux Modulation due to Saturation -- 5.4.4 The Analytical Iterative Model (AIM) -- 5.4.4.1 Magnetic Potential, A, Solution -- 5.4.4.2 The Computer Program -- 5.4.4.3 Model Validation on No Load -- 5.5 The EMF in an A.C. Winding -- 5.6 The Magnetisation Inductance -- 5.7 Saturated Magnetisation Inductance by Curve Fitting -- 5.8 Summary -- References -- Chapter 6 Leakage Inductances and Resistances -- 6.1 Leakage Fields -- 6.2 Differential Leakage Inductances -- 6.3 Rectangular Slot Leakage Inductance/Single Layer -- 6.4 Rectangular Slot Leakage Inductance/Two Layers -- 6.5 Rounded Shape Slot Leakage Inductance/Two Layers -- 6.6 Zig-Zag Airgap Leakage Inductances -- 6.7 End-Connection Leakage Inductance -- 6.8 Skewing Leakage Inductance -- 6.9 Rotor Bar and End Ring Equivalent Leakage Inductance -- 6.10 Basic Phase Resistance -- 6.11 The Cage Rotor Resistance -- 6.12 Simplified Leakage Saturation Corrections -- 6.13 Reducing the Rotor to Stator -- 6.14 The Brushless Doubly Fed Induction Machine (BDFIM) -- 6.15 Summary -- References -- Chapter 7 Steady-State Equivalent Circuit and Performance -- 7.1 Basic Steady-State Equivalent Circuit -- 7.2 Classification of Operation Modes -- 7.3 Ideal No-Load Operation -- 7.4 Short-Circuit (Zero Speed) Operation -- 7.5 No-Load Motor Operation -- 7.6 The Motor Mode of Operation -- 7.7 Generating to Power Grid -- 7.8 Autonomous Induction Generator Mode -- 7.9 The Electromagnetic Torque -- 7.10 Efficiency and Power Factor -- 7.11 Phasor Diagrams: Standard and New -- 7.12 Alternative Equivalent Circuits -- 7.13 Unbalanced Supply Voltages -- 7.14 One Stator Phase Is Open -- 7.15 Unbalanced Rotor Windings -- 7.16 One Rotor Phase Is Open -- 7.17 When Voltage Varies Around Rated Value 7.18 When Stator Voltages Have Time Harmonics -- 7.19 Equivalent Circuits for Brushless Doubly Fed IMs -- 7.20 Summary -- References -- Chapter 8 Starting and Speed Control Methods -- 8.1 Starting of Cage-Rotor Induction Motors -- 8.1.1 Direct Starting -- 8.1.2 Autotransformer Starting -- 8.1.3 Wye-Delta Starting -- 8.1.4 Softstarting -- 8.2 Starting of Wound-Rotor Induction Motors -- 8.3 Speed Control Methods for Cage-Rotor Induction Motors -- 8.3.1 The Voltage Reduction Method -- 8.3.2 The Pole-Changing Method -- 8.4 Variable Frequency Methods -- 8.4.1 V/f Scalar Control Characteristics -- 8.4.2 Rotor Flux Vector Control -- 8.5 Speed Control Methods for Wound-Rotor IMs -- 8.5.1 Additional Voltage to the Rotor (the Doubly Fed Machine) -- 8.6 Control Basics of DFIMs -- 8.7 Summary -- References -- Chapter 9 Skin and On-Load Saturation Effects -- 9.1 Introduction -- 9.2 The Skin Effect -- 9.2.1 Single Conductor in Rectangular Slot -- 9.2.2 Multiple Conductors in Rectangular Slots: Series Connection -- 9.2.3 Multiple Conductors in Slot: Parallel Connection -- 9.2.4 The Skin Effect in the End Turns -- 9.3 Skin Effects by the Multilayer Approach -- 9.4 Skin Effect in the End Rings via the Multilayer Approach -- 9.5 The Double Cage Behaves Like a Deep Bar Cage -- 9.6 Leakage Flux Path Saturation - A Simplified Approach -- 9.7 Leakage Saturation and Skin Effects - A Comprehensive Analytical Approach -- 9.7.1 The Skewing mmf -- 9.7.2 Flux in the Cross-Section Marked by AB (Figure 9.25) -- 9.7.3 The Stator Tooth Top Saturates First -- 9.7.4 Unsaturated Rotor Tooth Top -- 9.7.5 Saturated Rotor Tooth Tip -- 9.7.6 The Case of Closed Rotor Slots -- 9.7.7 The Algorithm -- 9.8 The FEM Approach -- 9.9 Magnetic Saturation Effects on Current/Slip and Torque/Slip Curves -- 9.10 Rotor Slot Leakage Reactance Saturation Effects -- 9.11 Solid Rotor Effects 9.12 Standardised Line-Start Induction Motors -- 9.13 Summary -- References -- Chapter 10 Airgap Field Space Harmonics, Parasitic Torques, Radial Forces, and Noise Basics -- 10.1 Stator mmf Produced Airgap Flux Harmonics -- 10.2 Airgap Field of a Squirrel-Cage Winding -- 10.3 Airgap Permeance Harmonics -- 10.4 Leakage Saturation Influence on Airgap Permeance -- 10.5 Main Flux Saturation Influence on Airgap Permeance -- 10.6 The Harmonics-Rich Airgap Flux Density -- 10.7 The Eccentricity Influence on Airgap Magnetic Permeance -- 10.8 Interactions of mmf (or Step) Harmonics and Airgap Magnetic Permeance Harmonics -- 10.9 Parasitic Torques -- 10.9.1 When Do Asynchronous Parasitic Torques Occur? -- 10.9.2 Synchronous Parasitic Torques -- 10.9.3 Leakage Saturation Influence on Synchronous Torques -- 10.9.4 The Secondary Armature Reaction -- 10.9.5 Notable Differences between Theoretical and Experimental Torque/Speed Curves -- 10.9.6 A Case Study: N[sub(s)]/N[sub(r)]= 36/28, 2p[sub(1)]= 4, y/& -- #964 -- = 1, and 7/9 -- m = 3 [7] -- 10.9.7 Evaluation of Parasitic Torques by Tests (after Ref. [1]) -- 10.10 Radial Forces and Electromagnetic Noise Basics -- 10.10.1 Constant Airgap (No Slotting, No Eccentricity) -- 10.10.2 Influence of Stator/Rotor Slot Openings, Airgap Deflection, and Saturation -- 10.10.3 Influence of Rotor Eccentricity on Noise -- 10.10.4 Parallel Stator Windings -- 10.10.5 Slip-Ring Induction Motors -- 10.10.6 Mechanical Resonance Stator Frequencies -- 10.11 Electromagnetic Vibration: A Practical View -- 10.12 Summary -- References -- Chapter 11 Losses in Induction Machines -- 11.1 Loss Classifications -- 11.2 Fundamental Electromagnetic Losses -- 11.3 No-Load Space Harmonics (Stray No-Load) Losses in Nonskewed IMs -- 11.3.1 No-Load Surface Core Losses -- 11.3.2 No-Load Tooth Flux Pulsation Losses 11.3.3 No-Load Tooth Flux Pulsation Cage Losses -- 11.4 Load Space Harmonics (Stray Load) Losses in Nonskewed IMs -- 11.5 Flux Pulsation (Stray) Losses in Skewed Insulated Bars -- 11.6 Interbar Current Losses in Uninsulated Skewed Rotor Cages -- 11.7 No-Load Rotor Skewed Uninsulated Cage Losses -- 11.8 Load Rotor Skewed Uninsulated Cage Losses -- 11.9 Rules to Reduce Full-Load Stray (Space Harmonics) Losses -- 11.10 High-Frequency Time Harmonics Losses -- 11.10.1 Conductor Losses -- 11.10.2 Core Losses -- 11.10.3 Total Time Harmonics Losses -- 11.11 Computation of Time-Harmonics Conductor Losses -- 11.12 Time-Harmonics Interbar Rotor Current Losses -- 11.13 Computation of Time-Harmonic Core Losses -- 11.13.1 Slot Wall Core Losses -- 11.13.2 Zig-Zag Rotor Surface Losses -- 11.14 Loss Computation by FEM Basics -- 11.15 Summary -- References -- Chapter 12 Thermal Modelling and Cooling -- 12.1 Introduction -- 12.2 Some Air Cooling Methods for IMs -- 12.3 Conduction Heat Transfer -- 12.4 Convection Heat Transfer -- 12.5 Heat Transfer by Radiation -- 12.6 Heat Transport (Thermal Transients) in a Homogenous Body -- 12.7 Induction Motor Thermal Transients at Stall -- 12.8 Intermittent Operation -- 12.9 Temperature Rise (t[sub(ON)]) and Fall (t[sub(OFF)]) Times -- 12.10 More Realistic Thermal Equivalent Circuits for IMs -- 12.11 A Detailed Thermal Equivalent Circuit for Transients -- 12.12 Thermal Equivalent Circuit Identification -- 12.13 Thermal Analysis through FEM -- 12.14 Summary -- References -- Chapter 13 Single-Phase Induction Machines: The Basics -- 13.1 Introduction -- 13.2 Split-Phase Induction Motors -- 13.3 Capacitor Induction Motors -- 13.3.1 Capacitor-Start Induction Motors -- 13.3.2 The Two-Value Capacitor Induction Motor -- 13.3.3 Permanent-Split Capacitor Induction Motors -- 13.3.4 Tapped-Winding Capacitor Induction Motors 13.3.5 Split-Phase Capacitor Induction Motors |
ctrlnum | (ZDB-30-PQE)EBC6209724 (ZDB-30-PAD)EBC6209724 (ZDB-89-EBL)EBL6209724 (OCoLC)1156394977 (DE-599)BVBBV047441680 |
dewey-full | 621.34 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.34 |
dewey-search | 621.34 |
dewey-sort | 3621.34 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1201/9781003033417 |
edition | 3rd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11425nmm a2200601zc 4500</leader><controlfield tag="001">BV047441680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000056730</subfield><subfield code="9">978-1-00-005673-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003033417</subfield><subfield code="9">978-1-003-03341-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003033417</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6209724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6209724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6209724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1156394977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.34</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8250</subfield><subfield code="0">(DE-625)157603:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boldea, Ion</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Induction Machines Handbook</subfield><subfield code="b">Steady State Modeling and Performance</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">Taylor & Francis Group</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 423 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Electric Power Engineering Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Chapter 1 Induction Machines: An Introduction -- 1.1 Electric Energy and Induction Motors -- 1.2 A Historical Touch -- 1.3 Induction Machines in Applications -- 1.4 Conclusion -- References -- Chapter 2 Construction Aspects and Operation Principles -- 2.1 Construction Aspects of Rotary IMs -- 2.1.1 The Magnetic Cores -- 2.1.2 Slot Geometry -- 2.1.3 IM Windings -- 2.1.4 Cage Rotor Windings -- 2.2 Construction Aspects of Linear Induction Motors -- 2.3 Operation Principles of IMs -- 2.4 Summary -- References -- Chapter 3 Magnetic, Electric, and Insulation Materials for IM -- 3.1 Introduction -- 3.2 Soft Magnetic Materials -- 3.3 Core(Magnetic) Losses -- 3.4 Electrical Conductors -- 3.5 Insulation Materials -- 3.5.1 Random-Wound IM Insulation -- 3.5.2 Form-Wound Windings -- 3.6 Summary -- References -- Chapter 4 Induction Machine Windings and Their mmfs -- 4.1 Introduction -- 4.2 The Ideal Travelling mmf of A.C. Windings -- 4.3 A Primitive Single-Layer Winding -- 4.4 A Primitive Two-Layer Chorded Winding -- 4.5 The mmf Harmonics for Integer q -- 4.6 Rules for Designing Practical A.C. Windings -- 4.7 Basic Fractional q Three-Phase A.C. Windings -- 4.8 Basic Pole-Changing Three-Phase A.C. Windings -- 4.9 Two-Phase A.C. Windings -- 4.10 Pole Changing with Single-Phase Supply Induction Motors -- 4.11 Special Topics on A.C. Windings -- 4.12 The mmf of Rotor Windings -- 4.13 The "Skewing" mmf Concept -- 4.14 Multiphase and Multilayer Tooth-Wound Coil Windings -- 4.15 Summary -- References -- Chapter 5 The Magnetisation Curve and Inductance -- 5.1 Introduction -- 5.2 Equivalent Airgap to Account for Slotting -- 5.3 Effective Stack Length -- 5.4 The Basic Magnetisation Curve</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.1 The Magnetisation Curve via the Basic Magnetic Circuit -- 5.4.2 Teeth Deuflxing by Slots -- 5.4.3 Third Harmonic Flux Modulation due to Saturation -- 5.4.4 The Analytical Iterative Model (AIM) -- 5.4.4.1 Magnetic Potential, A, Solution -- 5.4.4.2 The Computer Program -- 5.4.4.3 Model Validation on No Load -- 5.5 The EMF in an A.C. Winding -- 5.6 The Magnetisation Inductance -- 5.7 Saturated Magnetisation Inductance by Curve Fitting -- 5.8 Summary -- References -- Chapter 6 Leakage Inductances and Resistances -- 6.1 Leakage Fields -- 6.2 Differential Leakage Inductances -- 6.3 Rectangular Slot Leakage Inductance/Single Layer -- 6.4 Rectangular Slot Leakage Inductance/Two Layers -- 6.5 Rounded Shape Slot Leakage Inductance/Two Layers -- 6.6 Zig-Zag Airgap Leakage Inductances -- 6.7 End-Connection Leakage Inductance -- 6.8 Skewing Leakage Inductance -- 6.9 Rotor Bar and End Ring Equivalent Leakage Inductance -- 6.10 Basic Phase Resistance -- 6.11 The Cage Rotor Resistance -- 6.12 Simplified Leakage Saturation Corrections -- 6.13 Reducing the Rotor to Stator -- 6.14 The Brushless Doubly Fed Induction Machine (BDFIM) -- 6.15 Summary -- References -- Chapter 7 Steady-State Equivalent Circuit and Performance -- 7.1 Basic Steady-State Equivalent Circuit -- 7.2 Classification of Operation Modes -- 7.3 Ideal No-Load Operation -- 7.4 Short-Circuit (Zero Speed) Operation -- 7.5 No-Load Motor Operation -- 7.6 The Motor Mode of Operation -- 7.7 Generating to Power Grid -- 7.8 Autonomous Induction Generator Mode -- 7.9 The Electromagnetic Torque -- 7.10 Efficiency and Power Factor -- 7.11 Phasor Diagrams: Standard and New -- 7.12 Alternative Equivalent Circuits -- 7.13 Unbalanced Supply Voltages -- 7.14 One Stator Phase Is Open -- 7.15 Unbalanced Rotor Windings -- 7.16 One Rotor Phase Is Open -- 7.17 When Voltage Varies Around Rated Value</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.18 When Stator Voltages Have Time Harmonics -- 7.19 Equivalent Circuits for Brushless Doubly Fed IMs -- 7.20 Summary -- References -- Chapter 8 Starting and Speed Control Methods -- 8.1 Starting of Cage-Rotor Induction Motors -- 8.1.1 Direct Starting -- 8.1.2 Autotransformer Starting -- 8.1.3 Wye-Delta Starting -- 8.1.4 Softstarting -- 8.2 Starting of Wound-Rotor Induction Motors -- 8.3 Speed Control Methods for Cage-Rotor Induction Motors -- 8.3.1 The Voltage Reduction Method -- 8.3.2 The Pole-Changing Method -- 8.4 Variable Frequency Methods -- 8.4.1 V/f Scalar Control Characteristics -- 8.4.2 Rotor Flux Vector Control -- 8.5 Speed Control Methods for Wound-Rotor IMs -- 8.5.1 Additional Voltage to the Rotor (the Doubly Fed Machine) -- 8.6 Control Basics of DFIMs -- 8.7 Summary -- References -- Chapter 9 Skin and On-Load Saturation Effects -- 9.1 Introduction -- 9.2 The Skin Effect -- 9.2.1 Single Conductor in Rectangular Slot -- 9.2.2 Multiple Conductors in Rectangular Slots: Series Connection -- 9.2.3 Multiple Conductors in Slot: Parallel Connection -- 9.2.4 The Skin Effect in the End Turns -- 9.3 Skin Effects by the Multilayer Approach -- 9.4 Skin Effect in the End Rings via the Multilayer Approach -- 9.5 The Double Cage Behaves Like a Deep Bar Cage -- 9.6 Leakage Flux Path Saturation - A Simplified Approach -- 9.7 Leakage Saturation and Skin Effects - A Comprehensive Analytical Approach -- 9.7.1 The Skewing mmf -- 9.7.2 Flux in the Cross-Section Marked by AB (Figure 9.25) -- 9.7.3 The Stator Tooth Top Saturates First -- 9.7.4 Unsaturated Rotor Tooth Top -- 9.7.5 Saturated Rotor Tooth Tip -- 9.7.6 The Case of Closed Rotor Slots -- 9.7.7 The Algorithm -- 9.8 The FEM Approach -- 9.9 Magnetic Saturation Effects on Current/Slip and Torque/Slip Curves -- 9.10 Rotor Slot Leakage Reactance Saturation Effects -- 9.11 Solid Rotor Effects</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.12 Standardised Line-Start Induction Motors -- 9.13 Summary -- References -- Chapter 10 Airgap Field Space Harmonics, Parasitic Torques, Radial Forces, and Noise Basics -- 10.1 Stator mmf Produced Airgap Flux Harmonics -- 10.2 Airgap Field of a Squirrel-Cage Winding -- 10.3 Airgap Permeance Harmonics -- 10.4 Leakage Saturation Influence on Airgap Permeance -- 10.5 Main Flux Saturation Influence on Airgap Permeance -- 10.6 The Harmonics-Rich Airgap Flux Density -- 10.7 The Eccentricity Influence on Airgap Magnetic Permeance -- 10.8 Interactions of mmf (or Step) Harmonics and Airgap Magnetic Permeance Harmonics -- 10.9 Parasitic Torques -- 10.9.1 When Do Asynchronous Parasitic Torques Occur? -- 10.9.2 Synchronous Parasitic Torques -- 10.9.3 Leakage Saturation Influence on Synchronous Torques -- 10.9.4 The Secondary Armature Reaction -- 10.9.5 Notable Differences between Theoretical and Experimental Torque/Speed Curves -- 10.9.6 A Case Study: N[sub(s)]/N[sub(r)]= 36/28, 2p[sub(1)]= 4, y/&amp -- #964 -- = 1, and 7/9 -- m = 3 [7] -- 10.9.7 Evaluation of Parasitic Torques by Tests (after Ref. [1]) -- 10.10 Radial Forces and Electromagnetic Noise Basics -- 10.10.1 Constant Airgap (No Slotting, No Eccentricity) -- 10.10.2 Influence of Stator/Rotor Slot Openings, Airgap Deflection, and Saturation -- 10.10.3 Influence of Rotor Eccentricity on Noise -- 10.10.4 Parallel Stator Windings -- 10.10.5 Slip-Ring Induction Motors -- 10.10.6 Mechanical Resonance Stator Frequencies -- 10.11 Electromagnetic Vibration: A Practical View -- 10.12 Summary -- References -- Chapter 11 Losses in Induction Machines -- 11.1 Loss Classifications -- 11.2 Fundamental Electromagnetic Losses -- 11.3 No-Load Space Harmonics (Stray No-Load) Losses in Nonskewed IMs -- 11.3.1 No-Load Surface Core Losses -- 11.3.2 No-Load Tooth Flux Pulsation Losses</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.3.3 No-Load Tooth Flux Pulsation Cage Losses -- 11.4 Load Space Harmonics (Stray Load) Losses in Nonskewed IMs -- 11.5 Flux Pulsation (Stray) Losses in Skewed Insulated Bars -- 11.6 Interbar Current Losses in Uninsulated Skewed Rotor Cages -- 11.7 No-Load Rotor Skewed Uninsulated Cage Losses -- 11.8 Load Rotor Skewed Uninsulated Cage Losses -- 11.9 Rules to Reduce Full-Load Stray (Space Harmonics) Losses -- 11.10 High-Frequency Time Harmonics Losses -- 11.10.1 Conductor Losses -- 11.10.2 Core Losses -- 11.10.3 Total Time Harmonics Losses -- 11.11 Computation of Time-Harmonics Conductor Losses -- 11.12 Time-Harmonics Interbar Rotor Current Losses -- 11.13 Computation of Time-Harmonic Core Losses -- 11.13.1 Slot Wall Core Losses -- 11.13.2 Zig-Zag Rotor Surface Losses -- 11.14 Loss Computation by FEM Basics -- 11.15 Summary -- References -- Chapter 12 Thermal Modelling and Cooling -- 12.1 Introduction -- 12.2 Some Air Cooling Methods for IMs -- 12.3 Conduction Heat Transfer -- 12.4 Convection Heat Transfer -- 12.5 Heat Transfer by Radiation -- 12.6 Heat Transport (Thermal Transients) in a Homogenous Body -- 12.7 Induction Motor Thermal Transients at Stall -- 12.8 Intermittent Operation -- 12.9 Temperature Rise (t[sub(ON)]) and Fall (t[sub(OFF)]) Times -- 12.10 More Realistic Thermal Equivalent Circuits for IMs -- 12.11 A Detailed Thermal Equivalent Circuit for Transients -- 12.12 Thermal Equivalent Circuit Identification -- 12.13 Thermal Analysis through FEM -- 12.14 Summary -- References -- Chapter 13 Single-Phase Induction Machines: The Basics -- 13.1 Introduction -- 13.2 Split-Phase Induction Motors -- 13.3 Capacitor Induction Motors -- 13.3.1 Capacitor-Start Induction Motors -- 13.3.2 The Two-Value Capacitor Induction Motor -- 13.3.3 Permanent-Split Capacitor Induction Motors -- 13.3.4 Tapped-Winding Capacitor Induction Motors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.3.5 Split-Phase Capacitor Induction Motors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric machinery, Induction-Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asynchronmotor</subfield><subfield code="0">(DE-588)4068900-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Induktion</subfield><subfield code="0">(DE-588)4026765-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asynchronmaschine</subfield><subfield code="0">(DE-588)4003345-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Asynchronmaschine</subfield><subfield code="0">(DE-588)4003345-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asynchronmotor</subfield><subfield code="0">(DE-588)4068900-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Induktion</subfield><subfield code="0">(DE-588)4026765-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Boldea, Ion</subfield><subfield code="t">Induction Machines Handbook</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="z">9780367466121</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003033417</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843832</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003033417</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441680 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:15Z |
institution | BVB |
isbn | 9781000056730 9781003033417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843832 |
oclc_num | 1156394977 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (xix, 423 Seiten) |
psigel | ZDB-30-PQE ZDB-7-TFC |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Taylor & Francis Group |
record_format | marc |
series2 | Electric Power Engineering Ser |
spelling | Boldea, Ion Verfasser aut Induction Machines Handbook Steady State Modeling and Performance 3rd ed Milton Taylor & Francis Group 2020 ©2020 1 Online-Ressource (xix, 423 Seiten) txt rdacontent c rdamedia cr rdacarrier Electric Power Engineering Ser Description based on publisher supplied metadata and other sources Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Chapter 1 Induction Machines: An Introduction -- 1.1 Electric Energy and Induction Motors -- 1.2 A Historical Touch -- 1.3 Induction Machines in Applications -- 1.4 Conclusion -- References -- Chapter 2 Construction Aspects and Operation Principles -- 2.1 Construction Aspects of Rotary IMs -- 2.1.1 The Magnetic Cores -- 2.1.2 Slot Geometry -- 2.1.3 IM Windings -- 2.1.4 Cage Rotor Windings -- 2.2 Construction Aspects of Linear Induction Motors -- 2.3 Operation Principles of IMs -- 2.4 Summary -- References -- Chapter 3 Magnetic, Electric, and Insulation Materials for IM -- 3.1 Introduction -- 3.2 Soft Magnetic Materials -- 3.3 Core(Magnetic) Losses -- 3.4 Electrical Conductors -- 3.5 Insulation Materials -- 3.5.1 Random-Wound IM Insulation -- 3.5.2 Form-Wound Windings -- 3.6 Summary -- References -- Chapter 4 Induction Machine Windings and Their mmfs -- 4.1 Introduction -- 4.2 The Ideal Travelling mmf of A.C. Windings -- 4.3 A Primitive Single-Layer Winding -- 4.4 A Primitive Two-Layer Chorded Winding -- 4.5 The mmf Harmonics for Integer q -- 4.6 Rules for Designing Practical A.C. Windings -- 4.7 Basic Fractional q Three-Phase A.C. Windings -- 4.8 Basic Pole-Changing Three-Phase A.C. Windings -- 4.9 Two-Phase A.C. Windings -- 4.10 Pole Changing with Single-Phase Supply Induction Motors -- 4.11 Special Topics on A.C. Windings -- 4.12 The mmf of Rotor Windings -- 4.13 The "Skewing" mmf Concept -- 4.14 Multiphase and Multilayer Tooth-Wound Coil Windings -- 4.15 Summary -- References -- Chapter 5 The Magnetisation Curve and Inductance -- 5.1 Introduction -- 5.2 Equivalent Airgap to Account for Slotting -- 5.3 Effective Stack Length -- 5.4 The Basic Magnetisation Curve 5.4.1 The Magnetisation Curve via the Basic Magnetic Circuit -- 5.4.2 Teeth Deuflxing by Slots -- 5.4.3 Third Harmonic Flux Modulation due to Saturation -- 5.4.4 The Analytical Iterative Model (AIM) -- 5.4.4.1 Magnetic Potential, A, Solution -- 5.4.4.2 The Computer Program -- 5.4.4.3 Model Validation on No Load -- 5.5 The EMF in an A.C. Winding -- 5.6 The Magnetisation Inductance -- 5.7 Saturated Magnetisation Inductance by Curve Fitting -- 5.8 Summary -- References -- Chapter 6 Leakage Inductances and Resistances -- 6.1 Leakage Fields -- 6.2 Differential Leakage Inductances -- 6.3 Rectangular Slot Leakage Inductance/Single Layer -- 6.4 Rectangular Slot Leakage Inductance/Two Layers -- 6.5 Rounded Shape Slot Leakage Inductance/Two Layers -- 6.6 Zig-Zag Airgap Leakage Inductances -- 6.7 End-Connection Leakage Inductance -- 6.8 Skewing Leakage Inductance -- 6.9 Rotor Bar and End Ring Equivalent Leakage Inductance -- 6.10 Basic Phase Resistance -- 6.11 The Cage Rotor Resistance -- 6.12 Simplified Leakage Saturation Corrections -- 6.13 Reducing the Rotor to Stator -- 6.14 The Brushless Doubly Fed Induction Machine (BDFIM) -- 6.15 Summary -- References -- Chapter 7 Steady-State Equivalent Circuit and Performance -- 7.1 Basic Steady-State Equivalent Circuit -- 7.2 Classification of Operation Modes -- 7.3 Ideal No-Load Operation -- 7.4 Short-Circuit (Zero Speed) Operation -- 7.5 No-Load Motor Operation -- 7.6 The Motor Mode of Operation -- 7.7 Generating to Power Grid -- 7.8 Autonomous Induction Generator Mode -- 7.9 The Electromagnetic Torque -- 7.10 Efficiency and Power Factor -- 7.11 Phasor Diagrams: Standard and New -- 7.12 Alternative Equivalent Circuits -- 7.13 Unbalanced Supply Voltages -- 7.14 One Stator Phase Is Open -- 7.15 Unbalanced Rotor Windings -- 7.16 One Rotor Phase Is Open -- 7.17 When Voltage Varies Around Rated Value 7.18 When Stator Voltages Have Time Harmonics -- 7.19 Equivalent Circuits for Brushless Doubly Fed IMs -- 7.20 Summary -- References -- Chapter 8 Starting and Speed Control Methods -- 8.1 Starting of Cage-Rotor Induction Motors -- 8.1.1 Direct Starting -- 8.1.2 Autotransformer Starting -- 8.1.3 Wye-Delta Starting -- 8.1.4 Softstarting -- 8.2 Starting of Wound-Rotor Induction Motors -- 8.3 Speed Control Methods for Cage-Rotor Induction Motors -- 8.3.1 The Voltage Reduction Method -- 8.3.2 The Pole-Changing Method -- 8.4 Variable Frequency Methods -- 8.4.1 V/f Scalar Control Characteristics -- 8.4.2 Rotor Flux Vector Control -- 8.5 Speed Control Methods for Wound-Rotor IMs -- 8.5.1 Additional Voltage to the Rotor (the Doubly Fed Machine) -- 8.6 Control Basics of DFIMs -- 8.7 Summary -- References -- Chapter 9 Skin and On-Load Saturation Effects -- 9.1 Introduction -- 9.2 The Skin Effect -- 9.2.1 Single Conductor in Rectangular Slot -- 9.2.2 Multiple Conductors in Rectangular Slots: Series Connection -- 9.2.3 Multiple Conductors in Slot: Parallel Connection -- 9.2.4 The Skin Effect in the End Turns -- 9.3 Skin Effects by the Multilayer Approach -- 9.4 Skin Effect in the End Rings via the Multilayer Approach -- 9.5 The Double Cage Behaves Like a Deep Bar Cage -- 9.6 Leakage Flux Path Saturation - A Simplified Approach -- 9.7 Leakage Saturation and Skin Effects - A Comprehensive Analytical Approach -- 9.7.1 The Skewing mmf -- 9.7.2 Flux in the Cross-Section Marked by AB (Figure 9.25) -- 9.7.3 The Stator Tooth Top Saturates First -- 9.7.4 Unsaturated Rotor Tooth Top -- 9.7.5 Saturated Rotor Tooth Tip -- 9.7.6 The Case of Closed Rotor Slots -- 9.7.7 The Algorithm -- 9.8 The FEM Approach -- 9.9 Magnetic Saturation Effects on Current/Slip and Torque/Slip Curves -- 9.10 Rotor Slot Leakage Reactance Saturation Effects -- 9.11 Solid Rotor Effects 9.12 Standardised Line-Start Induction Motors -- 9.13 Summary -- References -- Chapter 10 Airgap Field Space Harmonics, Parasitic Torques, Radial Forces, and Noise Basics -- 10.1 Stator mmf Produced Airgap Flux Harmonics -- 10.2 Airgap Field of a Squirrel-Cage Winding -- 10.3 Airgap Permeance Harmonics -- 10.4 Leakage Saturation Influence on Airgap Permeance -- 10.5 Main Flux Saturation Influence on Airgap Permeance -- 10.6 The Harmonics-Rich Airgap Flux Density -- 10.7 The Eccentricity Influence on Airgap Magnetic Permeance -- 10.8 Interactions of mmf (or Step) Harmonics and Airgap Magnetic Permeance Harmonics -- 10.9 Parasitic Torques -- 10.9.1 When Do Asynchronous Parasitic Torques Occur? -- 10.9.2 Synchronous Parasitic Torques -- 10.9.3 Leakage Saturation Influence on Synchronous Torques -- 10.9.4 The Secondary Armature Reaction -- 10.9.5 Notable Differences between Theoretical and Experimental Torque/Speed Curves -- 10.9.6 A Case Study: N[sub(s)]/N[sub(r)]= 36/28, 2p[sub(1)]= 4, y/& -- #964 -- = 1, and 7/9 -- m = 3 [7] -- 10.9.7 Evaluation of Parasitic Torques by Tests (after Ref. [1]) -- 10.10 Radial Forces and Electromagnetic Noise Basics -- 10.10.1 Constant Airgap (No Slotting, No Eccentricity) -- 10.10.2 Influence of Stator/Rotor Slot Openings, Airgap Deflection, and Saturation -- 10.10.3 Influence of Rotor Eccentricity on Noise -- 10.10.4 Parallel Stator Windings -- 10.10.5 Slip-Ring Induction Motors -- 10.10.6 Mechanical Resonance Stator Frequencies -- 10.11 Electromagnetic Vibration: A Practical View -- 10.12 Summary -- References -- Chapter 11 Losses in Induction Machines -- 11.1 Loss Classifications -- 11.2 Fundamental Electromagnetic Losses -- 11.3 No-Load Space Harmonics (Stray No-Load) Losses in Nonskewed IMs -- 11.3.1 No-Load Surface Core Losses -- 11.3.2 No-Load Tooth Flux Pulsation Losses 11.3.3 No-Load Tooth Flux Pulsation Cage Losses -- 11.4 Load Space Harmonics (Stray Load) Losses in Nonskewed IMs -- 11.5 Flux Pulsation (Stray) Losses in Skewed Insulated Bars -- 11.6 Interbar Current Losses in Uninsulated Skewed Rotor Cages -- 11.7 No-Load Rotor Skewed Uninsulated Cage Losses -- 11.8 Load Rotor Skewed Uninsulated Cage Losses -- 11.9 Rules to Reduce Full-Load Stray (Space Harmonics) Losses -- 11.10 High-Frequency Time Harmonics Losses -- 11.10.1 Conductor Losses -- 11.10.2 Core Losses -- 11.10.3 Total Time Harmonics Losses -- 11.11 Computation of Time-Harmonics Conductor Losses -- 11.12 Time-Harmonics Interbar Rotor Current Losses -- 11.13 Computation of Time-Harmonic Core Losses -- 11.13.1 Slot Wall Core Losses -- 11.13.2 Zig-Zag Rotor Surface Losses -- 11.14 Loss Computation by FEM Basics -- 11.15 Summary -- References -- Chapter 12 Thermal Modelling and Cooling -- 12.1 Introduction -- 12.2 Some Air Cooling Methods for IMs -- 12.3 Conduction Heat Transfer -- 12.4 Convection Heat Transfer -- 12.5 Heat Transfer by Radiation -- 12.6 Heat Transport (Thermal Transients) in a Homogenous Body -- 12.7 Induction Motor Thermal Transients at Stall -- 12.8 Intermittent Operation -- 12.9 Temperature Rise (t[sub(ON)]) and Fall (t[sub(OFF)]) Times -- 12.10 More Realistic Thermal Equivalent Circuits for IMs -- 12.11 A Detailed Thermal Equivalent Circuit for Transients -- 12.12 Thermal Equivalent Circuit Identification -- 12.13 Thermal Analysis through FEM -- 12.14 Summary -- References -- Chapter 13 Single-Phase Induction Machines: The Basics -- 13.1 Introduction -- 13.2 Split-Phase Induction Motors -- 13.3 Capacitor Induction Motors -- 13.3.1 Capacitor-Start Induction Motors -- 13.3.2 The Two-Value Capacitor Induction Motor -- 13.3.3 Permanent-Split Capacitor Induction Motors -- 13.3.4 Tapped-Winding Capacitor Induction Motors 13.3.5 Split-Phase Capacitor Induction Motors Electric machinery, Induction-Handbooks, manuals, etc Asynchronmotor (DE-588)4068900-1 gnd rswk-swf Induktion (DE-588)4026765-9 gnd rswk-swf Asynchronmaschine (DE-588)4003345-4 gnd rswk-swf Asynchronmaschine (DE-588)4003345-4 s Asynchronmotor (DE-588)4068900-1 s Induktion (DE-588)4026765-9 s DE-604 Erscheint auch als Druck-Ausgabe Boldea, Ion Induction Machines Handbook Milton : Taylor & Francis Group,c2020 9780367466121 https://doi.org/10.1201/9781003033417 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Boldea, Ion Induction Machines Handbook Steady State Modeling and Performance Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- Chapter 1 Induction Machines: An Introduction -- 1.1 Electric Energy and Induction Motors -- 1.2 A Historical Touch -- 1.3 Induction Machines in Applications -- 1.4 Conclusion -- References -- Chapter 2 Construction Aspects and Operation Principles -- 2.1 Construction Aspects of Rotary IMs -- 2.1.1 The Magnetic Cores -- 2.1.2 Slot Geometry -- 2.1.3 IM Windings -- 2.1.4 Cage Rotor Windings -- 2.2 Construction Aspects of Linear Induction Motors -- 2.3 Operation Principles of IMs -- 2.4 Summary -- References -- Chapter 3 Magnetic, Electric, and Insulation Materials for IM -- 3.1 Introduction -- 3.2 Soft Magnetic Materials -- 3.3 Core(Magnetic) Losses -- 3.4 Electrical Conductors -- 3.5 Insulation Materials -- 3.5.1 Random-Wound IM Insulation -- 3.5.2 Form-Wound Windings -- 3.6 Summary -- References -- Chapter 4 Induction Machine Windings and Their mmfs -- 4.1 Introduction -- 4.2 The Ideal Travelling mmf of A.C. Windings -- 4.3 A Primitive Single-Layer Winding -- 4.4 A Primitive Two-Layer Chorded Winding -- 4.5 The mmf Harmonics for Integer q -- 4.6 Rules for Designing Practical A.C. Windings -- 4.7 Basic Fractional q Three-Phase A.C. Windings -- 4.8 Basic Pole-Changing Three-Phase A.C. Windings -- 4.9 Two-Phase A.C. Windings -- 4.10 Pole Changing with Single-Phase Supply Induction Motors -- 4.11 Special Topics on A.C. Windings -- 4.12 The mmf of Rotor Windings -- 4.13 The "Skewing" mmf Concept -- 4.14 Multiphase and Multilayer Tooth-Wound Coil Windings -- 4.15 Summary -- References -- Chapter 5 The Magnetisation Curve and Inductance -- 5.1 Introduction -- 5.2 Equivalent Airgap to Account for Slotting -- 5.3 Effective Stack Length -- 5.4 The Basic Magnetisation Curve 5.4.1 The Magnetisation Curve via the Basic Magnetic Circuit -- 5.4.2 Teeth Deuflxing by Slots -- 5.4.3 Third Harmonic Flux Modulation due to Saturation -- 5.4.4 The Analytical Iterative Model (AIM) -- 5.4.4.1 Magnetic Potential, A, Solution -- 5.4.4.2 The Computer Program -- 5.4.4.3 Model Validation on No Load -- 5.5 The EMF in an A.C. Winding -- 5.6 The Magnetisation Inductance -- 5.7 Saturated Magnetisation Inductance by Curve Fitting -- 5.8 Summary -- References -- Chapter 6 Leakage Inductances and Resistances -- 6.1 Leakage Fields -- 6.2 Differential Leakage Inductances -- 6.3 Rectangular Slot Leakage Inductance/Single Layer -- 6.4 Rectangular Slot Leakage Inductance/Two Layers -- 6.5 Rounded Shape Slot Leakage Inductance/Two Layers -- 6.6 Zig-Zag Airgap Leakage Inductances -- 6.7 End-Connection Leakage Inductance -- 6.8 Skewing Leakage Inductance -- 6.9 Rotor Bar and End Ring Equivalent Leakage Inductance -- 6.10 Basic Phase Resistance -- 6.11 The Cage Rotor Resistance -- 6.12 Simplified Leakage Saturation Corrections -- 6.13 Reducing the Rotor to Stator -- 6.14 The Brushless Doubly Fed Induction Machine (BDFIM) -- 6.15 Summary -- References -- Chapter 7 Steady-State Equivalent Circuit and Performance -- 7.1 Basic Steady-State Equivalent Circuit -- 7.2 Classification of Operation Modes -- 7.3 Ideal No-Load Operation -- 7.4 Short-Circuit (Zero Speed) Operation -- 7.5 No-Load Motor Operation -- 7.6 The Motor Mode of Operation -- 7.7 Generating to Power Grid -- 7.8 Autonomous Induction Generator Mode -- 7.9 The Electromagnetic Torque -- 7.10 Efficiency and Power Factor -- 7.11 Phasor Diagrams: Standard and New -- 7.12 Alternative Equivalent Circuits -- 7.13 Unbalanced Supply Voltages -- 7.14 One Stator Phase Is Open -- 7.15 Unbalanced Rotor Windings -- 7.16 One Rotor Phase Is Open -- 7.17 When Voltage Varies Around Rated Value 7.18 When Stator Voltages Have Time Harmonics -- 7.19 Equivalent Circuits for Brushless Doubly Fed IMs -- 7.20 Summary -- References -- Chapter 8 Starting and Speed Control Methods -- 8.1 Starting of Cage-Rotor Induction Motors -- 8.1.1 Direct Starting -- 8.1.2 Autotransformer Starting -- 8.1.3 Wye-Delta Starting -- 8.1.4 Softstarting -- 8.2 Starting of Wound-Rotor Induction Motors -- 8.3 Speed Control Methods for Cage-Rotor Induction Motors -- 8.3.1 The Voltage Reduction Method -- 8.3.2 The Pole-Changing Method -- 8.4 Variable Frequency Methods -- 8.4.1 V/f Scalar Control Characteristics -- 8.4.2 Rotor Flux Vector Control -- 8.5 Speed Control Methods for Wound-Rotor IMs -- 8.5.1 Additional Voltage to the Rotor (the Doubly Fed Machine) -- 8.6 Control Basics of DFIMs -- 8.7 Summary -- References -- Chapter 9 Skin and On-Load Saturation Effects -- 9.1 Introduction -- 9.2 The Skin Effect -- 9.2.1 Single Conductor in Rectangular Slot -- 9.2.2 Multiple Conductors in Rectangular Slots: Series Connection -- 9.2.3 Multiple Conductors in Slot: Parallel Connection -- 9.2.4 The Skin Effect in the End Turns -- 9.3 Skin Effects by the Multilayer Approach -- 9.4 Skin Effect in the End Rings via the Multilayer Approach -- 9.5 The Double Cage Behaves Like a Deep Bar Cage -- 9.6 Leakage Flux Path Saturation - A Simplified Approach -- 9.7 Leakage Saturation and Skin Effects - A Comprehensive Analytical Approach -- 9.7.1 The Skewing mmf -- 9.7.2 Flux in the Cross-Section Marked by AB (Figure 9.25) -- 9.7.3 The Stator Tooth Top Saturates First -- 9.7.4 Unsaturated Rotor Tooth Top -- 9.7.5 Saturated Rotor Tooth Tip -- 9.7.6 The Case of Closed Rotor Slots -- 9.7.7 The Algorithm -- 9.8 The FEM Approach -- 9.9 Magnetic Saturation Effects on Current/Slip and Torque/Slip Curves -- 9.10 Rotor Slot Leakage Reactance Saturation Effects -- 9.11 Solid Rotor Effects 9.12 Standardised Line-Start Induction Motors -- 9.13 Summary -- References -- Chapter 10 Airgap Field Space Harmonics, Parasitic Torques, Radial Forces, and Noise Basics -- 10.1 Stator mmf Produced Airgap Flux Harmonics -- 10.2 Airgap Field of a Squirrel-Cage Winding -- 10.3 Airgap Permeance Harmonics -- 10.4 Leakage Saturation Influence on Airgap Permeance -- 10.5 Main Flux Saturation Influence on Airgap Permeance -- 10.6 The Harmonics-Rich Airgap Flux Density -- 10.7 The Eccentricity Influence on Airgap Magnetic Permeance -- 10.8 Interactions of mmf (or Step) Harmonics and Airgap Magnetic Permeance Harmonics -- 10.9 Parasitic Torques -- 10.9.1 When Do Asynchronous Parasitic Torques Occur? -- 10.9.2 Synchronous Parasitic Torques -- 10.9.3 Leakage Saturation Influence on Synchronous Torques -- 10.9.4 The Secondary Armature Reaction -- 10.9.5 Notable Differences between Theoretical and Experimental Torque/Speed Curves -- 10.9.6 A Case Study: N[sub(s)]/N[sub(r)]= 36/28, 2p[sub(1)]= 4, y/& -- #964 -- = 1, and 7/9 -- m = 3 [7] -- 10.9.7 Evaluation of Parasitic Torques by Tests (after Ref. [1]) -- 10.10 Radial Forces and Electromagnetic Noise Basics -- 10.10.1 Constant Airgap (No Slotting, No Eccentricity) -- 10.10.2 Influence of Stator/Rotor Slot Openings, Airgap Deflection, and Saturation -- 10.10.3 Influence of Rotor Eccentricity on Noise -- 10.10.4 Parallel Stator Windings -- 10.10.5 Slip-Ring Induction Motors -- 10.10.6 Mechanical Resonance Stator Frequencies -- 10.11 Electromagnetic Vibration: A Practical View -- 10.12 Summary -- References -- Chapter 11 Losses in Induction Machines -- 11.1 Loss Classifications -- 11.2 Fundamental Electromagnetic Losses -- 11.3 No-Load Space Harmonics (Stray No-Load) Losses in Nonskewed IMs -- 11.3.1 No-Load Surface Core Losses -- 11.3.2 No-Load Tooth Flux Pulsation Losses 11.3.3 No-Load Tooth Flux Pulsation Cage Losses -- 11.4 Load Space Harmonics (Stray Load) Losses in Nonskewed IMs -- 11.5 Flux Pulsation (Stray) Losses in Skewed Insulated Bars -- 11.6 Interbar Current Losses in Uninsulated Skewed Rotor Cages -- 11.7 No-Load Rotor Skewed Uninsulated Cage Losses -- 11.8 Load Rotor Skewed Uninsulated Cage Losses -- 11.9 Rules to Reduce Full-Load Stray (Space Harmonics) Losses -- 11.10 High-Frequency Time Harmonics Losses -- 11.10.1 Conductor Losses -- 11.10.2 Core Losses -- 11.10.3 Total Time Harmonics Losses -- 11.11 Computation of Time-Harmonics Conductor Losses -- 11.12 Time-Harmonics Interbar Rotor Current Losses -- 11.13 Computation of Time-Harmonic Core Losses -- 11.13.1 Slot Wall Core Losses -- 11.13.2 Zig-Zag Rotor Surface Losses -- 11.14 Loss Computation by FEM Basics -- 11.15 Summary -- References -- Chapter 12 Thermal Modelling and Cooling -- 12.1 Introduction -- 12.2 Some Air Cooling Methods for IMs -- 12.3 Conduction Heat Transfer -- 12.4 Convection Heat Transfer -- 12.5 Heat Transfer by Radiation -- 12.6 Heat Transport (Thermal Transients) in a Homogenous Body -- 12.7 Induction Motor Thermal Transients at Stall -- 12.8 Intermittent Operation -- 12.9 Temperature Rise (t[sub(ON)]) and Fall (t[sub(OFF)]) Times -- 12.10 More Realistic Thermal Equivalent Circuits for IMs -- 12.11 A Detailed Thermal Equivalent Circuit for Transients -- 12.12 Thermal Equivalent Circuit Identification -- 12.13 Thermal Analysis through FEM -- 12.14 Summary -- References -- Chapter 13 Single-Phase Induction Machines: The Basics -- 13.1 Introduction -- 13.2 Split-Phase Induction Motors -- 13.3 Capacitor Induction Motors -- 13.3.1 Capacitor-Start Induction Motors -- 13.3.2 The Two-Value Capacitor Induction Motor -- 13.3.3 Permanent-Split Capacitor Induction Motors -- 13.3.4 Tapped-Winding Capacitor Induction Motors 13.3.5 Split-Phase Capacitor Induction Motors Electric machinery, Induction-Handbooks, manuals, etc Asynchronmotor (DE-588)4068900-1 gnd Induktion (DE-588)4026765-9 gnd Asynchronmaschine (DE-588)4003345-4 gnd |
subject_GND | (DE-588)4068900-1 (DE-588)4026765-9 (DE-588)4003345-4 |
title | Induction Machines Handbook Steady State Modeling and Performance |
title_auth | Induction Machines Handbook Steady State Modeling and Performance |
title_exact_search | Induction Machines Handbook Steady State Modeling and Performance |
title_exact_search_txtP | Induction Machines Handbook Steady State Modeling and Performance |
title_full | Induction Machines Handbook Steady State Modeling and Performance |
title_fullStr | Induction Machines Handbook Steady State Modeling and Performance |
title_full_unstemmed | Induction Machines Handbook Steady State Modeling and Performance |
title_short | Induction Machines Handbook |
title_sort | induction machines handbook steady state modeling and performance |
title_sub | Steady State Modeling and Performance |
topic | Electric machinery, Induction-Handbooks, manuals, etc Asynchronmotor (DE-588)4068900-1 gnd Induktion (DE-588)4026765-9 gnd Asynchronmaschine (DE-588)4003345-4 gnd |
topic_facet | Electric machinery, Induction-Handbooks, manuals, etc Asynchronmotor Induktion Asynchronmaschine |
url | https://doi.org/10.1201/9781003033417 |
work_keys_str_mv | AT boldeaion inductionmachineshandbooksteadystatemodelingandperformance |