Beyond worst-case analysis of algorithms:
There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the ap...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 Volltext |
Zusammenfassung: | There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the application. However, typical algorithms courses rely almost entirely on a single analysis framework, that of worst-case analysis, wherein an algorithm is assessed by its worst performance on any input of a given size. The purpose of this book is to popularize several alternatives to worst-case analysis and their most notable algorithmic applications, from clustering to linear programming to neural network training. Forty leading researchers have contributed introductions to different facets of this field, emphasizing the most important models and results, many of which can be taught in lectures to beginning graduate students in theoretical computer science and machine learning |
Beschreibung: | Title from publisher's bibliographic system (viewed on 18 Dec 2020) Machine generated contents note: Forward Dan Spielman; Preface; 1. Introduction Tim Roughgarden; Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi; 3. From adaptive analysis to instance optimality J�er�emy Barbay; 4. Resource augmentation Tim Roughgarden; Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev; 6. Approximation stability and proxy objectives Avrim Blum; 7. Sparse recovery Eric Price; Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden; 9. Introduction to semi-random models Uriel Feige; 10. Semi-random stochastic block models Ankur Moitra; 11. Random-order models Anupam Gupta and Sahil Singla; 12. Self-improving algorithms C. Seshadhri; Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey; 14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts; 15. - Smoothed analysis of Pareto curves in multiobjective optimization Heiko R�oglin; Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab; 17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane; 18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe; 19. Efficient tensor decomposition Aravindan Vijayaraghavan; 20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra; 21. Why do local methods solve nonconvex problems? Tengyu Ma; 22. Generalization in overparameterized models Moritz Hardt; 23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant; Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias; 25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi; 26. - When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan; 27. Prior-independent auctions Inbal Talgam-Cohen; 28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri; 29. Data-driven algorithm design Maria-Florina Balcan; 30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii. |
Beschreibung: | 1 Online-Ressource (xvii, 686 Seiten) |
ISBN: | 9781108637435 |
DOI: | 10.1017/9781108637435 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047133708 | ||
003 | DE-604 | ||
005 | 20231205 | ||
007 | cr|uuu---uuuuu | ||
008 | 210210s2020 xx o|||| 00||| eng d | ||
020 | |a 9781108637435 |c Online |9 978-1-108-63743-5 | ||
024 | 7 | |a 10.1017/9781108637435 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108637435 | ||
035 | |a (OCoLC)1414544705 | ||
035 | |a (DE-599)BVBBV047133708 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 005.13 | |
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
245 | 1 | 0 | |a Beyond worst-case analysis of algorithms |c edited by Tim Roughgarden |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xvii, 686 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 18 Dec 2020) | ||
500 | |a Machine generated contents note: Forward Dan Spielman; Preface; 1. Introduction Tim Roughgarden; Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi; 3. From adaptive analysis to instance optimality J�er�emy Barbay; 4. Resource augmentation Tim Roughgarden; Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev; 6. Approximation stability and proxy objectives Avrim Blum; 7. Sparse recovery Eric Price; Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden; 9. Introduction to semi-random models Uriel Feige; 10. Semi-random stochastic block models Ankur Moitra; 11. Random-order models Anupam Gupta and Sahil Singla; 12. Self-improving algorithms C. Seshadhri; Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey; 14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts; 15. | ||
500 | |a - Smoothed analysis of Pareto curves in multiobjective optimization Heiko R�oglin; Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab; 17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane; 18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe; 19. Efficient tensor decomposition Aravindan Vijayaraghavan; 20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra; 21. Why do local methods solve nonconvex problems? Tengyu Ma; 22. Generalization in overparameterized models Moritz Hardt; 23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant; Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias; 25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi; 26. | ||
500 | |a - When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan; 27. Prior-independent auctions Inbal Talgam-Cohen; 28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri; 29. Data-driven algorithm design Maria-Florina Balcan; 30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii. | ||
520 | |a There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the application. However, typical algorithms courses rely almost entirely on a single analysis framework, that of worst-case analysis, wherein an algorithm is assessed by its worst performance on any input of a given size. The purpose of this book is to popularize several alternatives to worst-case analysis and their most notable algorithmic applications, from clustering to linear programming to neural network training. Forty leading researchers have contributed introductions to different facets of this field, emphasizing the most important models and results, many of which can be taught in lectures to beginning graduate students in theoretical computer science and machine learning | ||
650 | 4 | |a Computer algorithms | |
650 | 4 | |a Computer programming | |
700 | 1 | |a Roughgarden, Tim |d 1975- |0 (DE-588)1117167275 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-49431-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108637435 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032539760 | |
966 | e | |u https://doi.org/10.1017/9781108637435 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108637435 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1820882845136060416 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Roughgarden, Tim 1975- |
author2_role | edt |
author2_variant | t r tr |
author_GND | (DE-588)1117167275 |
author_facet | Roughgarden, Tim 1975- |
building | Verbundindex |
bvnumber | BV047133708 |
classification_rvk | ST 134 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108637435 (OCoLC)1414544705 (DE-599)BVBBV047133708 |
dewey-full | 005.13 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13 |
dewey-search | 005.13 |
dewey-sort | 15.13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1017/9781108637435 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047133708</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231205</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210210s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108637435</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-63743-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108637435</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108637435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1414544705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047133708</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beyond worst-case analysis of algorithms</subfield><subfield code="c">edited by Tim Roughgarden</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 686 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 18 Dec 2020)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Machine generated contents note: Forward Dan Spielman; Preface; 1. Introduction Tim Roughgarden; Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi; 3. From adaptive analysis to instance optimality J�er�emy Barbay; 4. Resource augmentation Tim Roughgarden; Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev; 6. Approximation stability and proxy objectives Avrim Blum; 7. Sparse recovery Eric Price; Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden; 9. Introduction to semi-random models Uriel Feige; 10. Semi-random stochastic block models Ankur Moitra; 11. Random-order models Anupam Gupta and Sahil Singla; 12. Self-improving algorithms C. Seshadhri; Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey; 14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts; 15.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Smoothed analysis of Pareto curves in multiobjective optimization Heiko R�oglin; Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab; 17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane; 18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe; 19. Efficient tensor decomposition Aravindan Vijayaraghavan; 20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra; 21. Why do local methods solve nonconvex problems? Tengyu Ma; 22. Generalization in overparameterized models Moritz Hardt; 23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant; Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias; 25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi; 26.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan; 27. Prior-independent auctions Inbal Talgam-Cohen; 28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri; 29. Data-driven algorithm design Maria-Florina Balcan; 30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the application. However, typical algorithms courses rely almost entirely on a single analysis framework, that of worst-case analysis, wherein an algorithm is assessed by its worst performance on any input of a given size. The purpose of this book is to popularize several alternatives to worst-case analysis and their most notable algorithmic applications, from clustering to linear programming to neural network training. Forty leading researchers have contributed introductions to different facets of this field, emphasizing the most important models and results, many of which can be taught in lectures to beginning graduate students in theoretical computer science and machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roughgarden, Tim</subfield><subfield code="d">1975-</subfield><subfield code="0">(DE-588)1117167275</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-49431-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108637435</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032539760</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108637435</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108637435</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047133708 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:33:17Z |
indexdate | 2025-01-10T17:13:22Z |
institution | BVB |
isbn | 9781108637435 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032539760 |
oclc_num | 1414544705 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (xvii, 686 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Beyond worst-case analysis of algorithms edited by Tim Roughgarden Cambridge Cambridge University Press 2020 1 Online-Ressource (xvii, 686 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 18 Dec 2020) Machine generated contents note: Forward Dan Spielman; Preface; 1. Introduction Tim Roughgarden; Part I. Refinements of Worst-Case Analysis: 2. Parameterized algorithms Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi; 3. From adaptive analysis to instance optimality J�er�emy Barbay; 4. Resource augmentation Tim Roughgarden; Part II. Deterministic Models of Data: 5. Perturbation resilience Konstantin Makarychev and Yury Makarychev; 6. Approximation stability and proxy objectives Avrim Blum; 7. Sparse recovery Eric Price; Part III. Semi-Random Models: 8. Distributional analysis Tim Roughgarden; 9. Introduction to semi-random models Uriel Feige; 10. Semi-random stochastic block models Ankur Moitra; 11. Random-order models Anupam Gupta and Sahil Singla; 12. Self-improving algorithms C. Seshadhri; Part IV. Smoothed Analysis: 13. Smoothed analysis of local search Bodo Manthey; 14. Smoothed analysis of the simplex method Daniel Dadush and Sophie Huiberts; 15. - Smoothed analysis of Pareto curves in multiobjective optimization Heiko R�oglin; Part V. Applications in Machine Learning and Statistics: 16. Noise in classification Maria-Florina Balcan and Nika Haghtalab; 17. Robust high-dimensional statistics Ilias Diakonikolas and Daniel Kane; 18. Nearest-neighbor classification and search Sanjoy Dasgupta and Samory Kpotufe; 19. Efficient tensor decomposition Aravindan Vijayaraghavan; 20. Topic models and nonnegative matrix factorization Rong Ge and Ankur Moitra; 21. Why do local methods solve nonconvex problems? Tengyu Ma; 22. Generalization in overparameterized models Moritz Hardt; 23. Instance-optimal distribution testing and learning Gregory Valiant and Paul Valiant; Part VI. Further Applications: 24. Beyond competitive analysis Anna R. Karlin and Elias Koutsoupias; 25. On the unreasonable effectiveness of satisfiability solvers Vijay Ganesh and Moshe Vardi; 26. - When simple hash functions suffice Kai-Min Chung, Michael Mitzenmacher and Salil Vadhan; 27. Prior-independent auctions Inbal Talgam-Cohen; 28. Distribution-free models of social networks Tim Roughgarden and C. Seshadhri; 29. Data-driven algorithm design Maria-Florina Balcan; 30. Algorithms with predictions Michael Mitzenmacher and Sergei Vassilvitskii. There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the application. However, typical algorithms courses rely almost entirely on a single analysis framework, that of worst-case analysis, wherein an algorithm is assessed by its worst performance on any input of a given size. The purpose of this book is to popularize several alternatives to worst-case analysis and their most notable algorithmic applications, from clustering to linear programming to neural network training. Forty leading researchers have contributed introductions to different facets of this field, emphasizing the most important models and results, many of which can be taught in lectures to beginning graduate students in theoretical computer science and machine learning Computer algorithms Computer programming Roughgarden, Tim 1975- (DE-588)1117167275 edt Erscheint auch als Druck-Ausgabe 978-1-108-49431-1 https://doi.org/10.1017/9781108637435 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Beyond worst-case analysis of algorithms Computer algorithms Computer programming |
title | Beyond worst-case analysis of algorithms |
title_auth | Beyond worst-case analysis of algorithms |
title_exact_search | Beyond worst-case analysis of algorithms |
title_exact_search_txtP | Beyond worst-case analysis of algorithms |
title_full | Beyond worst-case analysis of algorithms edited by Tim Roughgarden |
title_fullStr | Beyond worst-case analysis of algorithms edited by Tim Roughgarden |
title_full_unstemmed | Beyond worst-case analysis of algorithms edited by Tim Roughgarden |
title_short | Beyond worst-case analysis of algorithms |
title_sort | beyond worst case analysis of algorithms |
topic | Computer algorithms Computer programming |
topic_facet | Computer algorithms Computer programming |
url | https://doi.org/10.1017/9781108637435 |
work_keys_str_mv | AT roughgardentim beyondworstcaseanalysisofalgorithms |