Abstract duality pairs in analysis:
"The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte Ltd.
© 2018
|
Schlagworte: | |
Online-Zugang: | URL des Erstveröffentlichers |
Zusammenfassung: | "The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued integrable functions, spaces of linear operators and vector valued sequence spaces. These examples give rise to numerous applications such as abstract versions of the Orlicz–Pettis Theorem on subseries convergent series, the Uniform Boundedness Principle, the Banach–Steinhaus Theorem, the Nikodym Convergence theorems and the Vitali–Hahn–Saks Theorem from measure theory and the Hahn–Schur Theorem from summability. There are no books on the current market which cover the material in this book. Readers will find interesting functional analysis and the many applications to various topics in real analysis."-- |
Beschreibung: | Description based on online resource; title from PDF title page (viewed December 6, 2017) |
Beschreibung: | 1 Online-Ressource (302 Seiten) Illustrationen |
ISBN: | 9789813232778 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047124606 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210204s2018 |||| o||u| ||||||eng d | ||
020 | |a 9789813232778 |9 978-981-3232-77-8 | ||
024 | 7 | |a 10.1142/10783 |2 doi | |
035 | |a (ZDB-124-WOP)00010783 | ||
035 | |a (OCoLC)1237587594 | ||
035 | |a (DE-599)BVBBV047124606 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.63 |2 23 | |
100 | 1 | |a Swartz, Charles |d 1938- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Abstract duality pairs in analysis |c Charles Swartz |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte Ltd. |c © 2018 | |
300 | |a 1 Online-Ressource (302 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (viewed December 6, 2017) | ||
520 | |a "The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued integrable functions, spaces of linear operators and vector valued sequence spaces. These examples give rise to numerous applications such as abstract versions of the Orlicz–Pettis Theorem on subseries convergent series, the Uniform Boundedness Principle, the Banach–Steinhaus Theorem, the Nikodym Convergence theorems and the Vitali–Hahn–Saks Theorem from measure theory and the Hahn–Schur Theorem from summability. There are no books on the current market which cover the material in this book. Readers will find interesting functional analysis and the many applications to various topics in real analysis."-- | ||
650 | 4 | |a Scalar field theory | |
650 | 4 | |a Abelian groups | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Electronic books | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10783#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032530846 |
Datensatz im Suchindex
_version_ | 1804182171530821632 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Swartz, Charles 1938- |
author_facet | Swartz, Charles 1938- |
author_role | aut |
author_sort | Swartz, Charles 1938- |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV047124606 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010783 (OCoLC)1237587594 (DE-599)BVBBV047124606 |
dewey-full | 515/.63 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.63 |
dewey-search | 515/.63 |
dewey-sort | 3515 263 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02193nmm a2200373zc 4500</leader><controlfield tag="001">BV047124606</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210204s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813232778</subfield><subfield code="9">978-981-3232-77-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10783</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237587594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047124606</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.63</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swartz, Charles</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Abstract duality pairs in analysis</subfield><subfield code="c">Charles Swartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte Ltd.</subfield><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (302 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (viewed December 6, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued integrable functions, spaces of linear operators and vector valued sequence spaces. These examples give rise to numerous applications such as abstract versions of the Orlicz–Pettis Theorem on subseries convergent series, the Uniform Boundedness Principle, the Banach–Steinhaus Theorem, the Nikodym Convergence theorems and the Vitali–Hahn–Saks Theorem from measure theory and the Hahn–Schur Theorem from summability. There are no books on the current market which cover the material in this book. Readers will find interesting functional analysis and the many applications to various topics in real analysis."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scalar field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10783#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032530846</subfield></datafield></record></collection> |
id | DE-604.BV047124606 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:30:25Z |
indexdate | 2024-07-10T09:03:19Z |
institution | BVB |
isbn | 9789813232778 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032530846 |
oclc_num | 1237587594 |
open_access_boolean | |
physical | 1 Online-Ressource (302 Seiten) Illustrationen |
psigel | ZDB-124-WOP |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific Publishing Co. Pte Ltd. |
record_format | marc |
spelling | Swartz, Charles 1938- Verfasser aut Abstract duality pairs in analysis Charles Swartz Singapore World Scientific Publishing Co. Pte Ltd. © 2018 1 Online-Ressource (302 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (viewed December 6, 2017) "The book presents a theory of abstract duality pairs which arises by replacing the scalar field by an Abelian topological group in the theory of dual pair of vector spaces. Examples of abstract duality pairs are vector valued series, spaces of vector valued measures, spaces of vector valued integrable functions, spaces of linear operators and vector valued sequence spaces. These examples give rise to numerous applications such as abstract versions of the Orlicz–Pettis Theorem on subseries convergent series, the Uniform Boundedness Principle, the Banach–Steinhaus Theorem, the Nikodym Convergence theorems and the Vitali–Hahn–Saks Theorem from measure theory and the Hahn–Schur Theorem from summability. There are no books on the current market which cover the material in this book. Readers will find interesting functional analysis and the many applications to various topics in real analysis."-- Scalar field theory Abelian groups Functional analysis Electronic books http://www.worldscientific.com/worldscibooks/10.1142/10783#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Swartz, Charles 1938- Abstract duality pairs in analysis Scalar field theory Abelian groups Functional analysis Electronic books |
title | Abstract duality pairs in analysis |
title_auth | Abstract duality pairs in analysis |
title_exact_search | Abstract duality pairs in analysis |
title_exact_search_txtP | Abstract duality pairs in analysis |
title_full | Abstract duality pairs in analysis Charles Swartz |
title_fullStr | Abstract duality pairs in analysis Charles Swartz |
title_full_unstemmed | Abstract duality pairs in analysis Charles Swartz |
title_short | Abstract duality pairs in analysis |
title_sort | abstract duality pairs in analysis |
topic | Scalar field theory Abelian groups Functional analysis Electronic books |
topic_facet | Scalar field theory Abelian groups Functional analysis Electronic books |
url | http://www.worldscientific.com/worldscibooks/10.1142/10783#t=toc |
work_keys_str_mv | AT swartzcharles abstractdualitypairsinanalysis |