The fractional Laplacian:
"This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this are...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
[2020]
|
Schlagworte: | |
Online-Zugang: | UBM01 Volltext |
Zusammenfassung: | "This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence"--Publisher's website |
Beschreibung: | 1 Online-Ressource (x, 331 Seiten) |
ISBN: | 9789813224001 9813224002 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047124544 | ||
003 | DE-604 | ||
005 | 20210422 | ||
007 | cr|uuu---uuuuu | ||
008 | 210204s2020 |||| o||u| ||||||eng d | ||
020 | |a 9789813224001 |9 978-981-3224-00-1 | ||
020 | |a 9813224002 |9 981-3224-00-2 | ||
024 | 7 | |a 10.1142/10550 |2 doi | |
035 | |a (ZDB-124-WOP)00010550 | ||
035 | |a (OCoLC)1237592429 | ||
035 | |a (DE-599)BVBBV047124544 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
082 | 0 | |a 515.3533 |2 23 | |
100 | 1 | |a Chen, Wenxiong |e Verfasser |0 (DE-588)1051267765 |4 aut | |
245 | 1 | 0 | |a The fractional Laplacian |c by Wenxiong Chen, Yan Li, Pei Ma |
264 | 1 | |a Singapore |b World Scientific |c [2020] | |
300 | |a 1 Online-Ressource (x, 331 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence"--Publisher's website | ||
650 | 4 | |a Laplacian operator | |
650 | 4 | |a Fractional differential equations | |
700 | 1 | |a Li, Yan |e Verfasser |0 (DE-588)1023846152 |4 aut | |
700 | 1 | |a Ma, Pei |e Verfasser |4 aut | |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/10550#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032530784 | ||
966 | e | |u https://doi.org/10.1142/10550 |l UBM01 |p ZDB-124-WOP |q UBM_PDA_WOP_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182171411283968 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Chen, Wenxiong Li, Yan Ma, Pei |
author_GND | (DE-588)1051267765 (DE-588)1023846152 |
author_facet | Chen, Wenxiong Li, Yan Ma, Pei |
author_role | aut aut aut |
author_sort | Chen, Wenxiong |
author_variant | w c wc y l yl p m pm |
building | Verbundindex |
bvnumber | BV047124544 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010550 (OCoLC)1237592429 (DE-599)BVBBV047124544 |
dewey-full | 515.3533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3533 |
dewey-search | 515.3533 |
dewey-sort | 3515.3533 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02359nmm a2200397zc 4500</leader><controlfield tag="001">BV047124544</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210422 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210204s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813224001</subfield><subfield code="9">978-981-3224-00-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9813224002</subfield><subfield code="9">981-3224-00-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10550</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237592429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047124544</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3533</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Wenxiong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1051267765</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The fractional Laplacian</subfield><subfield code="c">by Wenxiong Chen, Yan Li, Pei Ma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 331 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence"--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplacian operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional differential equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023846152</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Pei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/10550#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032530784</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/10550</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">UBM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047124544 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:30:25Z |
indexdate | 2024-07-10T09:03:18Z |
institution | BVB |
isbn | 9789813224001 9813224002 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032530784 |
oclc_num | 1237592429 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (x, 331 Seiten) |
psigel | ZDB-124-WOP ZDB-124-WOP UBM_PDA_WOP_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | World Scientific |
record_format | marc |
spelling | Chen, Wenxiong Verfasser (DE-588)1051267765 aut The fractional Laplacian by Wenxiong Chen, Yan Li, Pei Ma Singapore World Scientific [2020] 1 Online-Ressource (x, 331 Seiten) txt rdacontent c rdamedia cr rdacarrier "This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence"--Publisher's website Laplacian operator Fractional differential equations Li, Yan Verfasser (DE-588)1023846152 aut Ma, Pei Verfasser aut https://www.worldscientific.com/worldscibooks/10.1142/10550#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chen, Wenxiong Li, Yan Ma, Pei The fractional Laplacian Laplacian operator Fractional differential equations |
title | The fractional Laplacian |
title_auth | The fractional Laplacian |
title_exact_search | The fractional Laplacian |
title_exact_search_txtP | The fractional Laplacian |
title_full | The fractional Laplacian by Wenxiong Chen, Yan Li, Pei Ma |
title_fullStr | The fractional Laplacian by Wenxiong Chen, Yan Li, Pei Ma |
title_full_unstemmed | The fractional Laplacian by Wenxiong Chen, Yan Li, Pei Ma |
title_short | The fractional Laplacian |
title_sort | the fractional laplacian |
topic | Laplacian operator Fractional differential equations |
topic_facet | Laplacian operator Fractional differential equations |
url | https://www.worldscientific.com/worldscibooks/10.1142/10550#t=toc |
work_keys_str_mv | AT chenwenxiong thefractionallaplacian AT liyan thefractionallaplacian AT mapei thefractionallaplacian |