Data Mining for Scientific and Engineering Applications:
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining tec...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer US
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Massive Computing
2 |
Schlagworte: | |
Online-Zugang: | UBY01 URL des Eerstveröffentlichers |
Zusammenfassung: | Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering |
Beschreibung: | 1 Online-Ressource (XX, 605 p) |
ISBN: | 9781461517337 |
DOI: | 10.1007/978-1-4615-1733-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047064702 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461517337 |9 978-1-4615-1733-7 | ||
024 | 7 | |a 10.1007/978-1-4615-1733-7 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4615-1733-7 | ||
035 | |a (OCoLC)1227483277 | ||
035 | |a (DE-599)BVBBV047064702 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 005.73 |2 23 | |
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
245 | 1 | 0 | |a Data Mining for Scientific and Engineering Applications |c edited by R.L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a New York, NY |b Springer US |c 2001 | |
300 | |a 1 Online-Ressource (XX, 605 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Massive Computing |v 2 | |
520 | |a Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering | ||
650 | 4 | |a Data Structures and Information Theory | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Statistics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Computers | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Grossman, R.L. |4 edt | |
700 | 1 | |a Kamath, C. |4 edt | |
700 | 1 | |a Kegelmeyer, P. |4 edt | |
700 | 1 | |a Kumar, V. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402000331 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402001147 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461517344 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-1733-7 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471814 | ||
966 | e | |u https://doi.org/10.1007/978-1-4615-1733-7 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063075557376 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Grossman, R.L Kamath, C. Kegelmeyer, P. Kumar, V. |
author2_role | edt edt edt edt |
author2_variant | r g rg c k ck p k pk v k vk |
author_facet | Grossman, R.L Kamath, C. Kegelmeyer, P. Kumar, V. |
building | Verbundindex |
bvnumber | BV047064702 |
classification_rvk | ST 270 ST 530 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4615-1733-7 (OCoLC)1227483277 (DE-599)BVBBV047064702 |
dewey-full | 005.73 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.73 |
dewey-search | 005.73 |
dewey-sort | 15.73 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4615-1733-7 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03375nmm a2200637zcb4500</leader><controlfield tag="001">BV047064702</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461517337</subfield><subfield code="9">978-1-4615-1733-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-1733-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4615-1733-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227483277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064702</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.73</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Mining for Scientific and Engineering Applications</subfield><subfield code="c">edited by R.L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 605 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Massive Computing</subfield><subfield code="v">2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grossman, R.L.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamath, C.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kegelmeyer, P.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402000331</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402001147</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461517344</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-1733-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471814</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-1733-7</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047064702 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:35Z |
institution | BVB |
isbn | 9781461517337 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471814 |
oclc_num | 1227483277 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XX, 605 p) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer US |
record_format | marc |
series2 | Massive Computing |
spelling | Data Mining for Scientific and Engineering Applications edited by R.L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu 1st ed. 2001 New York, NY Springer US 2001 1 Online-Ressource (XX, 605 p) txt rdacontent c rdamedia cr rdacarrier Massive Computing 2 Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering Data Structures and Information Theory Artificial Intelligence Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Engineering, general Theory of Computation Data structures (Computer science) Artificial intelligence Statistics Engineering Computers Data Mining (DE-588)4428654-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Data Mining (DE-588)4428654-5 s DE-604 Grossman, R.L. edt Kamath, C. edt Kegelmeyer, P. edt Kumar, V. edt Erscheint auch als Druck-Ausgabe 9781402000331 Erscheint auch als Druck-Ausgabe 9781402001147 Erscheint auch als Druck-Ausgabe 9781461517344 https://doi.org/10.1007/978-1-4615-1733-7 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Data Mining for Scientific and Engineering Applications Data Structures and Information Theory Artificial Intelligence Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Engineering, general Theory of Computation Data structures (Computer science) Artificial intelligence Statistics Engineering Computers Data Mining (DE-588)4428654-5 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4143413-4 |
title | Data Mining for Scientific and Engineering Applications |
title_auth | Data Mining for Scientific and Engineering Applications |
title_exact_search | Data Mining for Scientific and Engineering Applications |
title_exact_search_txtP | Data Mining for Scientific and Engineering Applications |
title_full | Data Mining for Scientific and Engineering Applications edited by R.L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu |
title_fullStr | Data Mining for Scientific and Engineering Applications edited by R.L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu |
title_full_unstemmed | Data Mining for Scientific and Engineering Applications edited by R.L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, R. Namburu |
title_short | Data Mining for Scientific and Engineering Applications |
title_sort | data mining for scientific and engineering applications |
topic | Data Structures and Information Theory Artificial Intelligence Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Engineering, general Theory of Computation Data structures (Computer science) Artificial intelligence Statistics Engineering Computers Data Mining (DE-588)4428654-5 gnd |
topic_facet | Data Structures and Information Theory Artificial Intelligence Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Engineering, general Theory of Computation Data structures (Computer science) Artificial intelligence Statistics Engineering Computers Data Mining Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4615-1733-7 |
work_keys_str_mv | AT grossmanrl dataminingforscientificandengineeringapplications AT kamathc dataminingforscientificandengineeringapplications AT kegelmeyerp dataminingforscientificandengineeringapplications AT kumarv dataminingforscientificandengineeringapplications |