Assouad dimension and fractal geometry:
The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge tracts in mathematics
222 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBA01 Volltext |
Zusammenfassung: | The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyond. It places the theory of the Assouad dimension in context among up-to-date treatments of many key advances in fractal geometry, while also emphasising its diverse connections with areas of mathematics including number theory, dynamical systems, harmonic analysis, and probability theory. A final chapter detailing open problems and future directions for research brings readers to the cutting edge of this exciting field. This book will be an indispensable part of the modern fractal geometer's library and a valuable resource for pure mathematicians interested in the beauty and many applications of the Assouad dimension |
Beschreibung: | Title from publisher's bibliographic system (viewed on 13 Oct 2020) |
Beschreibung: | 1 Online-Ressource (xvi, 269 Seiten) Illustrationen |
ISBN: | 9781108778459 |
DOI: | 10.1017/9781108778459 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046975430 | ||
003 | DE-604 | ||
005 | 20201118 | ||
007 | cr|uuu---uuuuu | ||
008 | 201103s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781108778459 |c Online |9 978-1-108-77845-9 | ||
024 | 7 | |a 10.1017/9781108778459 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108778459 | ||
035 | |a (OCoLC)1220901107 | ||
035 | |a (DE-599)BVBBV046975430 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.742 | |
100 | 1 | |a Fraser, Jonathan M. |d 1987- |e Verfasser |0 (DE-588)1221540599 |4 aut | |
245 | 1 | 0 | |a Assouad dimension and fractal geometry |c Jonathan M. Fraser, University of St Andrews |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (xvi, 269 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 222 | |
500 | |a Title from publisher's bibliographic system (viewed on 13 Oct 2020) | ||
520 | |a The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyond. It places the theory of the Assouad dimension in context among up-to-date treatments of many key advances in fractal geometry, while also emphasising its diverse connections with areas of mathematics including number theory, dynamical systems, harmonic analysis, and probability theory. A final chapter detailing open problems and future directions for research brings readers to the cutting edge of this exciting field. This book will be an indispensable part of the modern fractal geometer's library and a valuable resource for pure mathematicians interested in the beauty and many applications of the Assouad dimension | ||
650 | 4 | |a Fractals | |
650 | 4 | |a Dimension theory (Topology) | |
650 | 0 | 7 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Fractals | |
653 | 0 | |a Dimension theory (Topology) | |
653 | 0 | |a Dimension theory (Topology) | |
653 | 0 | |a Fractals | |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Fraktalgeometrie |0 (DE-588)4473576-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-47865-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108778459 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032383564 | ||
966 | e | |u https://doi.org/10.1017/9781108778459 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778459 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108778459 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181905599365120 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Fraser, Jonathan M. 1987- |
author_GND | (DE-588)1221540599 |
author_facet | Fraser, Jonathan M. 1987- |
author_role | aut |
author_sort | Fraser, Jonathan M. 1987- |
author_variant | j m f jm jmf |
building | Verbundindex |
bvnumber | BV046975430 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108778459 (OCoLC)1220901107 (DE-599)BVBBV046975430 |
dewey-full | 514/.742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.742 |
dewey-search | 514/.742 |
dewey-sort | 3514 3742 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108778459 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02956nmm a2200517 cb4500</leader><controlfield tag="001">BV046975430</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201118 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201103s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108778459</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-77845-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108778459</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108778459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220901107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046975430</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.742</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fraser, Jonathan M.</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1221540599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assouad dimension and fractal geometry</subfield><subfield code="c">Jonathan M. Fraser, University of St Andrews</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 269 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">222</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 13 Oct 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyond. It places the theory of the Assouad dimension in context among up-to-date treatments of many key advances in fractal geometry, while also emphasising its diverse connections with areas of mathematics including number theory, dynamical systems, harmonic analysis, and probability theory. A final chapter detailing open problems and future directions for research brings readers to the cutting edge of this exciting field. This book will be an indispensable part of the modern fractal geometer's library and a valuable resource for pure mathematicians interested in the beauty and many applications of the Assouad dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension theory (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fractals</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dimension theory (Topology)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dimension theory (Topology)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fractals</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktalgeometrie</subfield><subfield code="0">(DE-588)4473576-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-47865-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108778459</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032383564</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778459</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778459</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108778459</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046975430 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:48:27Z |
indexdate | 2024-07-10T08:59:05Z |
institution | BVB |
isbn | 9781108778459 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032383564 |
oclc_num | 1220901107 |
open_access_boolean | |
owner | DE-384 DE-12 DE-92 |
owner_facet | DE-384 DE-12 DE-92 |
physical | 1 Online-Ressource (xvi, 269 Seiten) Illustrationen |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Fraser, Jonathan M. 1987- Verfasser (DE-588)1221540599 aut Assouad dimension and fractal geometry Jonathan M. Fraser, University of St Andrews Cambridge, United Kingdom ; New York, NY Cambridge University Press 2020 1 Online-Ressource (xvi, 269 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 222 Title from publisher's bibliographic system (viewed on 13 Oct 2020) The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyond. It places the theory of the Assouad dimension in context among up-to-date treatments of many key advances in fractal geometry, while also emphasising its diverse connections with areas of mathematics including number theory, dynamical systems, harmonic analysis, and probability theory. A final chapter detailing open problems and future directions for research brings readers to the cutting edge of this exciting field. This book will be an indispensable part of the modern fractal geometer's library and a valuable resource for pure mathematicians interested in the beauty and many applications of the Assouad dimension Fractals Dimension theory (Topology) Fraktalgeometrie (DE-588)4473576-5 gnd rswk-swf Electronic books Fraktalgeometrie (DE-588)4473576-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-108-47865-6 https://doi.org/10.1017/9781108778459 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Fraser, Jonathan M. 1987- Assouad dimension and fractal geometry Fractals Dimension theory (Topology) Fraktalgeometrie (DE-588)4473576-5 gnd |
subject_GND | (DE-588)4473576-5 |
title | Assouad dimension and fractal geometry |
title_auth | Assouad dimension and fractal geometry |
title_exact_search | Assouad dimension and fractal geometry |
title_exact_search_txtP | Assouad dimension and fractal geometry |
title_full | Assouad dimension and fractal geometry Jonathan M. Fraser, University of St Andrews |
title_fullStr | Assouad dimension and fractal geometry Jonathan M. Fraser, University of St Andrews |
title_full_unstemmed | Assouad dimension and fractal geometry Jonathan M. Fraser, University of St Andrews |
title_short | Assouad dimension and fractal geometry |
title_sort | assouad dimension and fractal geometry |
topic | Fractals Dimension theory (Topology) Fraktalgeometrie (DE-588)4473576-5 gnd |
topic_facet | Fractals Dimension theory (Topology) Fraktalgeometrie |
url | https://doi.org/10.1017/9781108778459 |
work_keys_str_mv | AT fraserjonathanm assouaddimensionandfractalgeometry |