Discrete morse theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2019]
|
Schriftenreihe: | Student mathematical library
Volume 90 |
Schlagworte: | |
Online-Zugang: | TUM01 UBM01 Volltext |
Beschreibung: | 1 Online-Ressource (xiv, 273 Seiten) Illustrationen |
ISBN: | 9781470453794 |
DOI: | 10.1090/stml/090 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046857043 | ||
003 | DE-604 | ||
005 | 20230323 | ||
007 | cr|uuu---uuuuu | ||
008 | 200818s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781470453794 |c online |9 978-1-4704-5379-4 | ||
024 | 7 | |a 10.1090/stml/090 |2 doi | |
035 | |a (OCoLC)1193297223 | ||
035 | |a (DE-599)BVBBV046857043 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-11 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 552 |2 stub | ||
100 | 1 | |a Scoville, Nicholas A. |e Verfasser |0 (DE-588)1199301965 |4 aut | |
245 | 1 | 0 | |a Discrete morse theory |c Nicholas A. Scoville |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (xiv, 273 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Student mathematical library |v Volume 90 | |
650 | 4 | |a Morse theory | |
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Geometry, Differential | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Homotopy theory |2 fast | |
650 | 7 | |a Morse theory |2 fast | |
650 | 0 | 7 | |a Morse-Theorie |0 (DE-588)4197103-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Morse-Theorie |0 (DE-588)4197103-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-5298-8 |
830 | 0 | |a Student mathematical library |v Volume 90 |w (DE-604)BV043218960 |9 90 | |
856 | 4 | 0 | |u https://doi.org/10.1090/stml/090 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMS |a ZDB-138-AML | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032265758 | ||
966 | e | |u https://doi.org/10.1090/stml/090 |l TUM01 |p ZDB-138-AMS |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1090/stml/090 |l UBM01 |p ZDB-138-AML |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181695167987712 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Scoville, Nicholas A. |
author_GND | (DE-588)1199301965 |
author_facet | Scoville, Nicholas A. |
author_role | aut |
author_sort | Scoville, Nicholas A. |
author_variant | n a s na nas |
building | Verbundindex |
bvnumber | BV046857043 |
classification_rvk | SK 350 |
classification_tum | MAT 552 |
collection | ZDB-138-AMS ZDB-138-AML |
ctrlnum | (OCoLC)1193297223 (DE-599)BVBBV046857043 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1090/stml/090 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01853nmm a2200493 cb4500</leader><controlfield tag="001">BV046857043</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230323 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200818s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470453794</subfield><subfield code="c">online</subfield><subfield code="9">978-1-4704-5379-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/stml/090</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193297223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046857043</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 552</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scoville, Nicholas A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1199301965</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete morse theory</subfield><subfield code="c">Nicholas A. Scoville</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 273 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Student mathematical library</subfield><subfield code="v">Volume 90</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopy theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-5298-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Student mathematical library</subfield><subfield code="v">Volume 90</subfield><subfield code="w">(DE-604)BV043218960</subfield><subfield code="9">90</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/stml/090</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMS</subfield><subfield code="a">ZDB-138-AML</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032265758</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/stml/090</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/stml/090</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AML</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046857043 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:11:42Z |
indexdate | 2024-07-10T08:55:44Z |
institution | BVB |
isbn | 9781470453794 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032265758 |
oclc_num | 1193297223 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-11 |
physical | 1 Online-Ressource (xiv, 273 Seiten) Illustrationen |
psigel | ZDB-138-AMS ZDB-138-AML ZDB-138-AMS TUM_Einzelkauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | American Mathematical Society |
record_format | marc |
series | Student mathematical library |
series2 | Student mathematical library |
spelling | Scoville, Nicholas A. Verfasser (DE-588)1199301965 aut Discrete morse theory Nicholas A. Scoville Providence, Rhode Island American Mathematical Society [2019] © 2019 1 Online-Ressource (xiv, 273 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Student mathematical library Volume 90 Morse theory Homotopy theory Geometry, Differential Geometry, Differential fast Homotopy theory fast Morse theory fast Morse-Theorie (DE-588)4197103-6 gnd rswk-swf Morse-Theorie (DE-588)4197103-6 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-4704-5298-8 Student mathematical library Volume 90 (DE-604)BV043218960 90 https://doi.org/10.1090/stml/090 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Scoville, Nicholas A. Discrete morse theory Student mathematical library Morse theory Homotopy theory Geometry, Differential Geometry, Differential fast Homotopy theory fast Morse theory fast Morse-Theorie (DE-588)4197103-6 gnd |
subject_GND | (DE-588)4197103-6 |
title | Discrete morse theory |
title_auth | Discrete morse theory |
title_exact_search | Discrete morse theory |
title_exact_search_txtP | Discrete morse theory |
title_full | Discrete morse theory Nicholas A. Scoville |
title_fullStr | Discrete morse theory Nicholas A. Scoville |
title_full_unstemmed | Discrete morse theory Nicholas A. Scoville |
title_short | Discrete morse theory |
title_sort | discrete morse theory |
topic | Morse theory Homotopy theory Geometry, Differential Geometry, Differential fast Homotopy theory fast Morse theory fast Morse-Theorie (DE-588)4197103-6 gnd |
topic_facet | Morse theory Homotopy theory Geometry, Differential Morse-Theorie |
url | https://doi.org/10.1090/stml/090 |
volume_link | (DE-604)BV043218960 |
work_keys_str_mv | AT scovillenicholasa discretemorsetheory |