The secret formula: how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation
The Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula―the key to unlocki...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; Oxford
Princeton University Press
[2020]
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHR01 FKE01 FLA01 TUM01 UBY01 UPA01 FCO01 Volltext |
Zusammenfassung: | The Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula―the key to unlocking a seemingly unsolvable, two-thousand-year-old mathematical problem. He wrote it down in the form of a poem to prevent other mathematicians from stealing it. Gerolamo Cardano was a physician, gifted scholar, and notorious gambler who would not hesitate to use flattery and even trickery to learn Tartaglia's secret. Set against the backdrop of sixteenth-century Italy, The Secret Formula provides new and compelling insights into the peculiarities of Renaissance mathematics while bringing a turbulent and culturally vibrant age to life. It was an era when mathematicians challenged each other in intellectual duels held outdoors before enthusiastic crowds. Success not only enhanced the winner's reputation, but could result in prize money and professional acclaim. After hearing of Tartaglia's spectacular victory in one such contest in Venice, Cardano invited him to Milan, determined to obtain his secret by whatever means necessary. Cardano's intrigues paid off. In 1545, he was the first to publish a general solution of the cubic equation. Tartaglia, eager to take his revenge by establishing his superiority as the most brilliant mathematician of the age, challenged Cardano to the ultimate mathematical duel. A lively and compelling account of genius, betrayal, and all-too-human failings, The Secret Formula reveals the epic rivalry behind one of the fundamental ideas of modern algebra |
Beschreibung: | 1 Online-Ressource Illustrationen |
ISBN: | 9780691200323 |
DOI: | 10.1515/9780691200323 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046815241 | ||
003 | DE-604 | ||
005 | 20201021 | ||
007 | cr|uuu---uuuuu | ||
008 | 200720s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780691200323 |9 978-0-691-20032-3 | ||
024 | 7 | |a 10.1515/9780691200323 |2 doi | |
035 | |a (OCoLC)1190913289 | ||
035 | |a (DE-599)BVBBV046815241 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-706 |a DE-858 | ||
100 | 1 | |a Toscano, Fabio |d 1969- |e Verfasser |0 (DE-588)1213822270 |4 aut | |
240 | 1 | 0 | |a La formula segreta (2009) |
245 | 1 | 0 | |a The secret formula |b how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation |c Fabio Toscano ; translated by Arturo Sangalli |
264 | 1 | |a Princeton ; Oxford |b Princeton University Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
336 | |b sti |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a The abbaco master -- The rule of the thing -- The Venetian challenge -- An invitation to Milan -- The old professor's notebook -- The final duel | |
520 | 3 | |a The Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula―the key to unlocking a seemingly unsolvable, two-thousand-year-old mathematical problem. He wrote it down in the form of a poem to prevent other mathematicians from stealing it. Gerolamo Cardano was a physician, gifted scholar, and notorious gambler who would not hesitate to use flattery and even trickery to learn Tartaglia's secret. Set against the backdrop of sixteenth-century Italy, The Secret Formula provides new and compelling insights into the peculiarities of Renaissance mathematics while bringing a turbulent and culturally vibrant age to life. It was an era when mathematicians challenged each other in intellectual duels held outdoors before enthusiastic crowds. Success not only enhanced the winner's reputation, but could result in prize money and professional acclaim. After hearing of Tartaglia's spectacular victory in one such contest in Venice, Cardano invited him to Milan, determined to obtain his secret by whatever means necessary. Cardano's intrigues paid off. In 1545, he was the first to publish a general solution of the cubic equation. Tartaglia, eager to take his revenge by establishing his superiority as the most brilliant mathematician of the age, challenged Cardano to the ultimate mathematical duel. A lively and compelling account of genius, betrayal, and all-too-human failings, The Secret Formula reveals the epic rivalry behind one of the fundamental ideas of modern algebra | |
546 | |a Translated from the Italian | ||
600 | 1 | 7 | |a Cardano, Girolamo |d 1501-1576 |0 (DE-588)11863822X |2 gnd |9 rswk-swf |
600 | 1 | 7 | |a Tartaglia, Niccolò |d 1500-1557 |0 (DE-588)11862086X |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kubische Gleichung |0 (DE-588)4455887-9 |2 gnd |9 rswk-swf |
653 | 1 | |a Tartaglia, Niccolò / -1557 | |
653 | 1 | |a Cardano, Girolamo / 1501-1576 | |
653 | 0 | |a Algebra / History / 16th century | |
653 | 0 | |a Equations / History | |
653 | 0 | |a Equations, Cubic / History | |
653 | 1 | |a Cardano, Girolamo / 1501-1576 | |
653 | 1 | |a Tartaglia, Niccolò / -1557 | |
653 | 0 | |a Algebra | |
653 | 0 | |a Equations | |
653 | 0 | |a Equations, Cubic | |
653 | 4 | |a 1500-1599 | |
653 | 6 | |a History | |
689 | 0 | 0 | |a Cardano, Girolamo |d 1501-1576 |0 (DE-588)11863822X |D p |
689 | 0 | 1 | |a Tartaglia, Niccolò |d 1500-1557 |0 (DE-588)11862086X |D p |
689 | 0 | 2 | |a Kubische Gleichung |0 (DE-588)4455887-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sangalli, Arturo |d 1940- |0 (DE-588)14263915X |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-6911-8367-1 |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691200323 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DMA |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032223718 | ||
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FHR01 |p ZDB-23-DMA |q FHR_ZDB-23-DMA20 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200323?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181623992745984 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Toscano, Fabio 1969- |
author2 | Sangalli, Arturo 1940- |
author2_role | trl |
author2_variant | a s as |
author_GND | (DE-588)1213822270 (DE-588)14263915X |
author_facet | Toscano, Fabio 1969- Sangalli, Arturo 1940- |
author_role | aut |
author_sort | Toscano, Fabio 1969- |
author_variant | f t ft |
building | Verbundindex |
bvnumber | BV046815241 |
collection | ZDB-23-DMA ZDB-23-DGG |
contents | The abbaco master -- The rule of the thing -- The Venetian challenge -- An invitation to Milan -- The old professor's notebook -- The final duel |
ctrlnum | (OCoLC)1190913289 (DE-599)BVBBV046815241 |
doi_str_mv | 10.1515/9780691200323 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05415nmm a2200733 c 4500</leader><controlfield tag="001">BV046815241</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200720s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691200323</subfield><subfield code="9">978-0-691-20032-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691200323</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1190913289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046815241</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Toscano, Fabio</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1213822270</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">La formula segreta (2009)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The secret formula</subfield><subfield code="b">how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation</subfield><subfield code="c">Fabio Toscano ; translated by Arturo Sangalli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; Oxford</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">sti</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The abbaco master -- The rule of the thing -- The Venetian challenge -- An invitation to Milan -- The old professor's notebook -- The final duel</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula―the key to unlocking a seemingly unsolvable, two-thousand-year-old mathematical problem. He wrote it down in the form of a poem to prevent other mathematicians from stealing it. Gerolamo Cardano was a physician, gifted scholar, and notorious gambler who would not hesitate to use flattery and even trickery to learn Tartaglia's secret. Set against the backdrop of sixteenth-century Italy, The Secret Formula provides new and compelling insights into the peculiarities of Renaissance mathematics while bringing a turbulent and culturally vibrant age to life. It was an era when mathematicians challenged each other in intellectual duels held outdoors before enthusiastic crowds. Success not only enhanced the winner's reputation, but could result in prize money and professional acclaim. After hearing of Tartaglia's spectacular victory in one such contest in Venice, Cardano invited him to Milan, determined to obtain his secret by whatever means necessary. Cardano's intrigues paid off. In 1545, he was the first to publish a general solution of the cubic equation. Tartaglia, eager to take his revenge by establishing his superiority as the most brilliant mathematician of the age, challenged Cardano to the ultimate mathematical duel. A lively and compelling account of genius, betrayal, and all-too-human failings, The Secret Formula reveals the epic rivalry behind one of the fundamental ideas of modern algebra</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Translated from the Italian</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Cardano, Girolamo</subfield><subfield code="d">1501-1576</subfield><subfield code="0">(DE-588)11863822X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Tartaglia, Niccolò</subfield><subfield code="d">1500-1557</subfield><subfield code="0">(DE-588)11862086X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kubische Gleichung</subfield><subfield code="0">(DE-588)4455887-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="1"><subfield code="a">Tartaglia, Niccolò / -1557</subfield></datafield><datafield tag="653" ind1=" " ind2="1"><subfield code="a">Cardano, Girolamo / 1501-1576</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebra / History / 16th century</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Equations / History</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Equations, Cubic / History</subfield></datafield><datafield tag="653" ind1=" " ind2="1"><subfield code="a">Cardano, Girolamo / 1501-1576</subfield></datafield><datafield tag="653" ind1=" " ind2="1"><subfield code="a">Tartaglia, Niccolò / -1557</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebra</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Equations, Cubic</subfield></datafield><datafield tag="653" ind1=" " ind2="4"><subfield code="a">1500-1599</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">History</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cardano, Girolamo</subfield><subfield code="d">1501-1576</subfield><subfield code="0">(DE-588)11863822X</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tartaglia, Niccolò</subfield><subfield code="d">1500-1557</subfield><subfield code="0">(DE-588)11862086X</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kubische Gleichung</subfield><subfield code="0">(DE-588)4455887-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sangalli, Arturo</subfield><subfield code="d">1940-</subfield><subfield code="0">(DE-588)14263915X</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-6911-8367-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691200323</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032223718</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">FHR_ZDB-23-DMA20</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200323?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046815241 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:00:02Z |
indexdate | 2024-07-10T08:54:36Z |
institution | BVB |
isbn | 9780691200323 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032223718 |
oclc_num | 1190913289 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-706 DE-858 |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-706 DE-858 |
physical | 1 Online-Ressource Illustrationen |
psigel | ZDB-23-DMA ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA FHR_ZDB-23-DMA20 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
spelling | Toscano, Fabio 1969- Verfasser (DE-588)1213822270 aut La formula segreta (2009) The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation Fabio Toscano ; translated by Arturo Sangalli Princeton ; Oxford Princeton University Press [2020] © 2020 1 Online-Ressource Illustrationen txt rdacontent sti rdacontent c rdamedia cr rdacarrier The abbaco master -- The rule of the thing -- The Venetian challenge -- An invitation to Milan -- The old professor's notebook -- The final duel The Secret Formula tells the story of two Renaissance mathematicians whose jealousies, intrigues, and contentious debates led to the discovery of a formula for the solution of the cubic equation. Niccolò Tartaglia was a talented and ambitious teacher who possessed a secret formula―the key to unlocking a seemingly unsolvable, two-thousand-year-old mathematical problem. He wrote it down in the form of a poem to prevent other mathematicians from stealing it. Gerolamo Cardano was a physician, gifted scholar, and notorious gambler who would not hesitate to use flattery and even trickery to learn Tartaglia's secret. Set against the backdrop of sixteenth-century Italy, The Secret Formula provides new and compelling insights into the peculiarities of Renaissance mathematics while bringing a turbulent and culturally vibrant age to life. It was an era when mathematicians challenged each other in intellectual duels held outdoors before enthusiastic crowds. Success not only enhanced the winner's reputation, but could result in prize money and professional acclaim. After hearing of Tartaglia's spectacular victory in one such contest in Venice, Cardano invited him to Milan, determined to obtain his secret by whatever means necessary. Cardano's intrigues paid off. In 1545, he was the first to publish a general solution of the cubic equation. Tartaglia, eager to take his revenge by establishing his superiority as the most brilliant mathematician of the age, challenged Cardano to the ultimate mathematical duel. A lively and compelling account of genius, betrayal, and all-too-human failings, The Secret Formula reveals the epic rivalry behind one of the fundamental ideas of modern algebra Translated from the Italian Cardano, Girolamo 1501-1576 (DE-588)11863822X gnd rswk-swf Tartaglia, Niccolò 1500-1557 (DE-588)11862086X gnd rswk-swf Kubische Gleichung (DE-588)4455887-9 gnd rswk-swf Tartaglia, Niccolò / -1557 Cardano, Girolamo / 1501-1576 Algebra / History / 16th century Equations / History Equations, Cubic / History Algebra Equations Equations, Cubic 1500-1599 History Cardano, Girolamo 1501-1576 (DE-588)11863822X p Tartaglia, Niccolò 1500-1557 (DE-588)11862086X p Kubische Gleichung (DE-588)4455887-9 s DE-604 Sangalli, Arturo 1940- (DE-588)14263915X trl Erscheint auch als Druck-Ausgabe 978-0-6911-8367-1 https://doi.org/10.1515/9780691200323 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Toscano, Fabio 1969- The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation The abbaco master -- The rule of the thing -- The Venetian challenge -- An invitation to Milan -- The old professor's notebook -- The final duel Cardano, Girolamo 1501-1576 (DE-588)11863822X gnd Tartaglia, Niccolò 1500-1557 (DE-588)11862086X gnd Kubische Gleichung (DE-588)4455887-9 gnd |
subject_GND | (DE-588)11863822X (DE-588)11862086X (DE-588)4455887-9 |
title | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation |
title_alt | La formula segreta (2009) |
title_auth | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation |
title_exact_search | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation |
title_exact_search_txtP | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation |
title_full | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation Fabio Toscano ; translated by Arturo Sangalli |
title_fullStr | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation Fabio Toscano ; translated by Arturo Sangalli |
title_full_unstemmed | The secret formula how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation Fabio Toscano ; translated by Arturo Sangalli |
title_short | The secret formula |
title_sort | the secret formula how a mathematical duel inflamed renaissance italy and uncovered the cubic equation |
title_sub | how a mathematical duel inflamed Renaissance Italy and uncovered the cubic equation |
topic | Cardano, Girolamo 1501-1576 (DE-588)11863822X gnd Tartaglia, Niccolò 1500-1557 (DE-588)11862086X gnd Kubische Gleichung (DE-588)4455887-9 gnd |
topic_facet | Cardano, Girolamo 1501-1576 Tartaglia, Niccolò 1500-1557 Kubische Gleichung |
url | https://doi.org/10.1515/9780691200323 |
work_keys_str_mv | AT toscanofabio laformulasegreta2009 AT sangalliarturo laformulasegreta2009 AT toscanofabio thesecretformulahowamathematicalduelinflamedrenaissanceitalyanduncoveredthecubicequation AT sangalliarturo thesecretformulahowamathematicalduelinflamedrenaissanceitalyanduncoveredthecubicequation |