Differentiable Manifolds: A Theoretical Physics Approach
This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers int...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
[2020]
|
Ausgabe: | Second Edition |
Schlagworte: | |
Zusammenfassung: | This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics |
Beschreibung: | This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics.The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations, connections, Riemannian manifolds, Lie groups, and Hamiltonian mechanics. Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics.This second edition greatly expands upon the first by including more examples, additional exercises, and new topics, such as the moment map and fiber bundles. Detailed solutions to every exercise are also provided.Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and a basic knowledge of analytical mechanicsReview of the first edition:This book presents an introduction to differential geometry and the calculus on manifolds with a view on some of its applications in physics. … The present author has succeeded in writing a book which has its own flavor and its own emphasis, which makes it certainly a valuable addition to the literature on the subject. Frans Cantrijn, Mathematical Reviews Preface.-1 Manifolds.- 2 Lie Derivatives.- 3 Differential Forms.- 4 Integral Manifolds.- 5 Connections.- 6. Riemannian Manifolds.- 7 Lie Groups.- 8 Hamiltonian Classical Mechanics.- References.-Index. |
Beschreibung: | x, 444 Seiten Illustrationen 235 mm |
ISBN: | 9783030451929 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046787243 | ||
003 | DE-604 | ||
005 | 20210921 | ||
007 | t | ||
008 | 200630s2020 a||| |||| 00||| eng d | ||
020 | |a 9783030451929 |c Druck |9 978-3-030-45192-9 | ||
024 | 3 | |a 9783030451929 | |
035 | |a (OCoLC)1183900416 | ||
035 | |a (DE-599)BVBBV046787243 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-83 | ||
084 | |a 53C21 |2 msc | ||
084 | |a 70H05 |2 msc | ||
084 | |a 58A05 |2 msc | ||
084 | |a 70H03 |2 msc | ||
100 | 1 | |a Torres del Castillo, Gerardo F. |d 1956- |0 (DE-588)140987932 |4 aut | |
245 | 1 | 0 | |a Differentiable Manifolds |b A Theoretical Physics Approach |c Gerardo F. Torres del Castillo |
250 | |a Second Edition | ||
264 | 1 | |a Cham |b Birkhäuser |c [2020] | |
300 | |a x, 444 Seiten |b Illustrationen |c 235 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics.The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations, connections, Riemannian manifolds, Lie groups, and Hamiltonian mechanics. Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics.This second edition greatly expands upon the first by including more examples, additional exercises, and new topics, such as the moment map and fiber bundles. Detailed solutions to every exercise are also provided.Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and a basic knowledge of analytical mechanicsReview of the first edition:This book presents an introduction to differential geometry and the calculus on manifolds with a view on some of its applications in physics. … The present author has succeeded in writing a book which has its own flavor and its own emphasis, which makes it certainly a valuable addition to the literature on the subject. Frans Cantrijn, Mathematical Reviews | ||
500 | |a Preface.-1 Manifolds.- 2 Lie Derivatives.- 3 Differential Forms.- 4 Integral Manifolds.- 5 Connections.- 6. Riemannian Manifolds.- 7 Lie Groups.- 8 Hamiltonian Classical Mechanics.- References.-Index. | ||
520 | |a This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Differential geometry | |
650 | 4 | |a Physics | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Mathematik/Geometrie | ||
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 2 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 3 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 0 | 4 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-45193-6 |
780 | 0 | 0 | |i Vorangegangen ist |z 978-0-8176-8270-5 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032196267 |
Datensatz im Suchindex
_version_ | 1804181573822578688 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Torres del Castillo, Gerardo F. 1956- |
author_GND | (DE-588)140987932 |
author_facet | Torres del Castillo, Gerardo F. 1956- |
author_role | aut |
author_sort | Torres del Castillo, Gerardo F. 1956- |
author_variant | d c g f t dcgf dcgft |
building | Verbundindex |
bvnumber | BV046787243 |
ctrlnum | (OCoLC)1183900416 (DE-599)BVBBV046787243 |
edition | Second Edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04544nam a2200673 c 4500</leader><controlfield tag="001">BV046787243</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210921 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200630s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030451929</subfield><subfield code="c">Druck</subfield><subfield code="9">978-3-030-45192-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783030451929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1183900416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046787243</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C21</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70H05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70H03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torres del Castillo, Gerardo F.</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)140987932</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differentiable Manifolds</subfield><subfield code="b">A Theoretical Physics Approach</subfield><subfield code="c">Gerardo F. Torres del Castillo</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 444 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">235 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics.The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations, connections, Riemannian manifolds, Lie groups, and Hamiltonian mechanics. Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics.This second edition greatly expands upon the first by including more examples, additional exercises, and new topics, such as the moment map and fiber bundles. Detailed solutions to every exercise are also provided.Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and a basic knowledge of analytical mechanicsReview of the first edition:This book presents an introduction to differential geometry and the calculus on manifolds with a view on some of its applications in physics. … The present author has succeeded in writing a book which has its own flavor and its own emphasis, which makes it certainly a valuable addition to the literature on the subject. Frans Cantrijn, Mathematical Reviews</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface.-1 Manifolds.- 2 Lie Derivatives.- 3 Differential Forms.- 4 Integral Manifolds.- 5 Connections.- 6. Riemannian Manifolds.- 7 Lie Groups.- 8 Hamiltonian Classical Mechanics.- References.-Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Geometrie</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-45193-6</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">978-0-8176-8270-5</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032196267</subfield></datafield></record></collection> |
id | DE-604.BV046787243 |
illustrated | Illustrated |
index_date | 2024-07-03T14:51:55Z |
indexdate | 2024-07-10T08:53:49Z |
institution | BVB |
isbn | 9783030451929 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032196267 |
oclc_num | 1183900416 |
open_access_boolean | |
owner | DE-29T DE-83 |
owner_facet | DE-29T DE-83 |
physical | x, 444 Seiten Illustrationen 235 mm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Birkhäuser |
record_format | marc |
spelling | Torres del Castillo, Gerardo F. 1956- (DE-588)140987932 aut Differentiable Manifolds A Theoretical Physics Approach Gerardo F. Torres del Castillo Second Edition Cham Birkhäuser [2020] x, 444 Seiten Illustrationen 235 mm txt rdacontent n rdamedia nc rdacarrier This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics.The first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations, connections, Riemannian manifolds, Lie groups, and Hamiltonian mechanics. Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics.This second edition greatly expands upon the first by including more examples, additional exercises, and new topics, such as the moment map and fiber bundles. Detailed solutions to every exercise are also provided.Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and a basic knowledge of analytical mechanicsReview of the first edition:This book presents an introduction to differential geometry and the calculus on manifolds with a view on some of its applications in physics. … The present author has succeeded in writing a book which has its own flavor and its own emphasis, which makes it certainly a valuable addition to the literature on the subject. Frans Cantrijn, Mathematical Reviews Preface.-1 Manifolds.- 2 Lie Derivatives.- 3 Differential Forms.- 4 Integral Manifolds.- 5 Connections.- 6. Riemannian Manifolds.- 7 Lie Groups.- 8 Hamiltonian Classical Mechanics.- References.-Index. This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics bicssc bisacsh Differential geometry Physics Topological groups Lie groups Mechanics Mathematics Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Hamilton-Formalismus (DE-588)4376155-0 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Hardcover, Softcover / Mathematik/Geometrie Differentialgeometrie (DE-588)4012248-7 s Mathematische Physik (DE-588)4037952-8 s Lie-Gruppe (DE-588)4035695-4 s Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s Hamilton-Formalismus (DE-588)4376155-0 s DE-604 Erscheint auch als Online-Ausgabe 978-3-030-45193-6 Vorangegangen ist 978-0-8176-8270-5 |
spellingShingle | Torres del Castillo, Gerardo F. 1956- Differentiable Manifolds A Theoretical Physics Approach bicssc bisacsh Differential geometry Physics Topological groups Lie groups Mechanics Mathematics Differentialgeometrie (DE-588)4012248-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4035695-4 (DE-588)4376155-0 (DE-588)4012269-4 (DE-588)4037952-8 |
title | Differentiable Manifolds A Theoretical Physics Approach |
title_auth | Differentiable Manifolds A Theoretical Physics Approach |
title_exact_search | Differentiable Manifolds A Theoretical Physics Approach |
title_exact_search_txtP | Differentiable Manifolds A Theoretical Physics Approach |
title_full | Differentiable Manifolds A Theoretical Physics Approach Gerardo F. Torres del Castillo |
title_fullStr | Differentiable Manifolds A Theoretical Physics Approach Gerardo F. Torres del Castillo |
title_full_unstemmed | Differentiable Manifolds A Theoretical Physics Approach Gerardo F. Torres del Castillo |
title_short | Differentiable Manifolds |
title_sort | differentiable manifolds a theoretical physics approach |
title_sub | A Theoretical Physics Approach |
topic | bicssc bisacsh Differential geometry Physics Topological groups Lie groups Mechanics Mathematics Differentialgeometrie (DE-588)4012248-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | bicssc bisacsh Differential geometry Physics Topological groups Lie groups Mechanics Mathematics Differentialgeometrie Lie-Gruppe Hamilton-Formalismus Differenzierbare Mannigfaltigkeit Mathematische Physik |
work_keys_str_mv | AT torresdelcastillogerardof differentiablemanifoldsatheoreticalphysicsapproach |