Mathematical analysis and numerical methods for science and technology: Volume 5 Evolution problems 1
299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
[2000]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | 299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable. |
Beschreibung: | 1 Online-Ressource (XIV, 739 Seiten) |
ISBN: | 9783642580901 |
DOI: | 10.1007/978-3-642-58090-1 |
Internformat
MARC
LEADER | 00000nmm a2200000 cc4500 | ||
---|---|---|---|
001 | BV046776986 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 200623s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783642580901 |c Online |9 978-3-642-58090-1 | ||
024 | 7 | |a 10.1007/978-3-642-58090-1 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-642-58090-1 | ||
035 | |a (ZDB-2-BAE)978-3-642-58090-1 | ||
035 | |a (OCoLC)1164618083 | ||
035 | |a (DE-599)BVBBV046776986 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dautray, Robert |d 1928- |e Verfasser |0 (DE-588)133309347 |4 aut | |
240 | 1 | 0 | |a Analyse mathématique et calcul numérique pour les sciences et les techniques |
245 | 1 | 0 | |a Mathematical analysis and numerical methods for science and technology |n Volume 5 |p Evolution problems |n 1 |c Robert Dautray, Jacques-Louis Lions |
264 | 1 | |a Berlin |b Springer |c [2000] | |
300 | |a 1 Online-Ressource (XIV, 739 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a 299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable. | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Lions, Jacques-Louis |d 1928-2001 |e Sonstige |0 (DE-588)124055397 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV046776242 |g 5,1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-540-66101-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-58090-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032186268 |
Datensatz im Suchindex
_version_ | 1804181555411681280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dautray, Robert 1928- |
author_GND | (DE-588)133309347 (DE-588)124055397 |
author_facet | Dautray, Robert 1928- |
author_role | aut |
author_sort | Dautray, Robert 1928- |
author_variant | r d rd |
building | Verbundindex |
bvnumber | BV046776986 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-2-SMA)978-3-642-58090-1 (ZDB-2-BAE)978-3-642-58090-1 (OCoLC)1164618083 (DE-599)BVBBV046776986 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-642-58090-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02963nmm a2200481 cc4500</leader><controlfield tag="001">BV046776986</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200623s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642580901</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-58090-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-58090-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-642-58090-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-BAE)978-3-642-58090-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164618083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046776986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dautray, Robert</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133309347</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Analyse mathématique et calcul numérique pour les sciences et les techniques</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical analysis and numerical methods for science and technology</subfield><subfield code="n">Volume 5</subfield><subfield code="p">Evolution problems</subfield><subfield code="n">1</subfield><subfield code="c">Robert Dautray, Jacques-Louis Lions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2000]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 739 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lions, Jacques-Louis</subfield><subfield code="d">1928-2001</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)124055397</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV046776242</subfield><subfield code="g">5,1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-540-66101-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-58090-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032186268</subfield></datafield></record></collection> |
id | DE-604.BV046776986 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:48:40Z |
indexdate | 2024-07-10T08:53:31Z |
institution | BVB |
isbn | 9783642580901 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032186268 |
oclc_num | 1164618083 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 739 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
spelling | Dautray, Robert 1928- Verfasser (DE-588)133309347 aut Analyse mathématique et calcul numérique pour les sciences et les techniques Mathematical analysis and numerical methods for science and technology Volume 5 Evolution problems 1 Robert Dautray, Jacques-Louis Lions Berlin Springer [2000] 1 Online-Ressource (XIV, 739 Seiten) txt rdacontent c rdamedia cr rdacarrier 299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable. Mathematics Differential equations, partial Numerical analysis Partial Differential Equations Numerical Analysis Mathematik Lions, Jacques-Louis 1928-2001 Sonstige (DE-588)124055397 oth (DE-604)BV046776242 5,1 Erscheint auch als Druck-Ausgabe 978-3-540-66101-6 https://doi.org/10.1007/978-3-642-58090-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dautray, Robert 1928- Mathematical analysis and numerical methods for science and technology Mathematics Differential equations, partial Numerical analysis Partial Differential Equations Numerical Analysis Mathematik |
title | Mathematical analysis and numerical methods for science and technology |
title_alt | Analyse mathématique et calcul numérique pour les sciences et les techniques |
title_auth | Mathematical analysis and numerical methods for science and technology |
title_exact_search | Mathematical analysis and numerical methods for science and technology |
title_exact_search_txtP | Mathematical analysis and numerical methods for science and technology |
title_full | Mathematical analysis and numerical methods for science and technology Volume 5 Evolution problems 1 Robert Dautray, Jacques-Louis Lions |
title_fullStr | Mathematical analysis and numerical methods for science and technology Volume 5 Evolution problems 1 Robert Dautray, Jacques-Louis Lions |
title_full_unstemmed | Mathematical analysis and numerical methods for science and technology Volume 5 Evolution problems 1 Robert Dautray, Jacques-Louis Lions |
title_short | Mathematical analysis and numerical methods for science and technology |
title_sort | mathematical analysis and numerical methods for science and technology evolution problems |
topic | Mathematics Differential equations, partial Numerical analysis Partial Differential Equations Numerical Analysis Mathematik |
topic_facet | Mathematics Differential equations, partial Numerical analysis Partial Differential Equations Numerical Analysis Mathematik |
url | https://doi.org/10.1007/978-3-642-58090-1 |
volume_link | (DE-604)BV046776242 |
work_keys_str_mv | AT dautrayrobert analysemathematiqueetcalculnumeriquepourlessciencesetlestechniques AT lionsjacqueslouis analysemathematiqueetcalculnumeriquepourlessciencesetlestechniques AT dautrayrobert mathematicalanalysisandnumericalmethodsforscienceandtechnologyvolume51 AT lionsjacqueslouis mathematicalanalysisandnumericalmethodsforscienceandtechnologyvolume51 |