A comprehensive introduction to sub-Riemannian geometry: from the Hamiltonian viewpoint
Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | Cambridge studies in advanced mathematics
181 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 TUM02 UBA01 Volltext |
Zusammenfassung: | Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource Illustrationen |
ISBN: | 9781108677325 |
DOI: | 10.1017/9781108677325 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046755415 | ||
003 | DE-604 | ||
005 | 20210715 | ||
007 | cr|uuu---uuuuu | ||
008 | 200609s2020 xxk|||| o||u| ||||||eng d | ||
020 | |a 9781108677325 |c Online |9 978-1-108-67732-5 | ||
024 | 7 | |a 10.1017/9781108677325 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108677325 | ||
035 | |a (OCoLC)1164606746 | ||
035 | |a (DE-599)BVBBV046755415 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-12 |a DE-92 |a DE-384 |a DE-91G | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 537 |2 stub | ||
100 | 1 | |a Agračev, Andrej Aleksandrovič |d 1952- |e Verfasser |0 (DE-588)1089340044 |4 aut | |
245 | 1 | 0 | |a A comprehensive introduction to sub-Riemannian geometry |b from the Hamiltonian viewpoint |c Andrei Agrachev (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste), Davide Barilari (Université Paris Diderot, Paris), Ugo Boscain (Centre National de la Recherche Scientifique (CNRS), LJLL, Sorbonne Université, Paris and Inria Paris) ; with an appendix by Igor Zelenko (Texas A & M University) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 181 | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Geometry, Riemannian | |
653 | 0 | |a Geometry, Riemannian | |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Barilari, Davide |d 1984- |e Verfasser |0 (DE-588)112004104X |4 aut | |
700 | 1 | |a Boscain, Ugo |d 1968- |e Verfasser |0 (DE-588)1120041325 |4 aut | |
700 | 1 | |a Zelenko, Igor |0 (DE-588)1200362268 |4 wst | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-108-47635-5 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 181 |w (DE-604)BV044781283 |9 181 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108677325 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032165073 | ||
966 | e | |u https://doi.org/10.1017/9781108677325 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108677325 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108677325 |l TUM01 |p ZDB-20-CBO |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108677325 |l TUM02 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108677325 |l UBA01 |p ZDB-20-CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181517548650496 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Agračev, Andrej Aleksandrovič 1952- Barilari, Davide 1984- Boscain, Ugo 1968- |
author_GND | (DE-588)1089340044 (DE-588)112004104X (DE-588)1120041325 (DE-588)1200362268 |
author_facet | Agračev, Andrej Aleksandrovič 1952- Barilari, Davide 1984- Boscain, Ugo 1968- |
author_role | aut aut aut |
author_sort | Agračev, Andrej Aleksandrovič 1952- |
author_variant | a a a aa aaa d b db u b ub |
building | Verbundindex |
bvnumber | BV046755415 |
classification_rvk | SK 370 |
classification_tum | MAT 537 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108677325 (OCoLC)1164606746 (DE-599)BVBBV046755415 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108677325 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03712nmm a2200553 cb4500</leader><controlfield tag="001">BV046755415</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210715 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200609s2020 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108677325</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-67732-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108677325</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108677325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164606746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046755415</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agračev, Andrej Aleksandrovič</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089340044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A comprehensive introduction to sub-Riemannian geometry</subfield><subfield code="b">from the Hamiltonian viewpoint</subfield><subfield code="c">Andrei Agrachev (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste), Davide Barilari (Université Paris Diderot, Paris), Ugo Boscain (Centre National de la Recherche Scientifique (CNRS), LJLL, Sorbonne Université, Paris and Inria Paris) ; with an appendix by Igor Zelenko (Texas A & M University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">181</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barilari, Davide</subfield><subfield code="d">1984-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112004104X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boscain, Ugo</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1120041325</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zelenko, Igor</subfield><subfield code="0">(DE-588)1200362268</subfield><subfield code="4">wst</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-47635-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">181</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">181</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108677325</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032165073</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108677325</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108677325</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108677325</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108677325</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108677325</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046755415 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:42:56Z |
indexdate | 2024-07-10T08:52:55Z |
institution | BVB |
isbn | 9781108677325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032165073 |
oclc_num | 1164606746 |
open_access_boolean | |
owner | DE-12 DE-92 DE-384 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-384 DE-91G DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Agračev, Andrej Aleksandrovič 1952- Verfasser (DE-588)1089340044 aut A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint Andrei Agrachev (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste), Davide Barilari (Université Paris Diderot, Paris), Ugo Boscain (Centre National de la Recherche Scientifique (CNRS), LJLL, Sorbonne Université, Paris and Inria Paris) ; with an appendix by Igor Zelenko (Texas A & M University) Cambridge Cambridge University Press 2020 1 Online-Ressource Illustrationen txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 181 Includes bibliographical references and index Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 s DE-604 Barilari, Davide 1984- Verfasser (DE-588)112004104X aut Boscain, Ugo 1968- Verfasser (DE-588)1120041325 aut Zelenko, Igor (DE-588)1200362268 wst Erscheint auch als Druck-Ausgabe, Hardcover 978-1-108-47635-5 Cambridge studies in advanced mathematics 181 (DE-604)BV044781283 181 https://doi.org/10.1017/9781108677325 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Agračev, Andrej Aleksandrovič 1952- Barilari, Davide 1984- Boscain, Ugo 1968- A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint Cambridge studies in advanced mathematics Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4128462-8 |
title | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint |
title_auth | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint |
title_exact_search | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint |
title_exact_search_txtP | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint |
title_full | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint Andrei Agrachev (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste), Davide Barilari (Université Paris Diderot, Paris), Ugo Boscain (Centre National de la Recherche Scientifique (CNRS), LJLL, Sorbonne Université, Paris and Inria Paris) ; with an appendix by Igor Zelenko (Texas A & M University) |
title_fullStr | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint Andrei Agrachev (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste), Davide Barilari (Université Paris Diderot, Paris), Ugo Boscain (Centre National de la Recherche Scientifique (CNRS), LJLL, Sorbonne Université, Paris and Inria Paris) ; with an appendix by Igor Zelenko (Texas A & M University) |
title_full_unstemmed | A comprehensive introduction to sub-Riemannian geometry from the Hamiltonian viewpoint Andrei Agrachev (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste), Davide Barilari (Université Paris Diderot, Paris), Ugo Boscain (Centre National de la Recherche Scientifique (CNRS), LJLL, Sorbonne Université, Paris and Inria Paris) ; with an appendix by Igor Zelenko (Texas A & M University) |
title_short | A comprehensive introduction to sub-Riemannian geometry |
title_sort | a comprehensive introduction to sub riemannian geometry from the hamiltonian viewpoint |
title_sub | from the Hamiltonian viewpoint |
topic | Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Riemannsche Geometrie |
url | https://doi.org/10.1017/9781108677325 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT agracevandrejaleksandrovic acomprehensiveintroductiontosubriemanniangeometryfromthehamiltonianviewpoint AT barilaridavide acomprehensiveintroductiontosubriemanniangeometryfromthehamiltonianviewpoint AT boscainugo acomprehensiveintroductiontosubriemanniangeometryfromthehamiltonianviewpoint AT zelenkoigor acomprehensiveintroductiontosubriemanniangeometryfromthehamiltonianviewpoint |