Data mining: concepts, models, methods, and algorithms
Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates r...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken
Wiley
[2020]
[New Jersey] IEEE Press |
Ausgabe: | Third edition |
Schriftenreihe: | IEEE Press
|
Schlagworte: | |
Zusammenfassung: | Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author'a noted expert on the topic'explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: -''' Explores big data and cloud computing -''' Examines deep learning -''' Includes information on convolutional neural networks (CNN) -''' Offers reinforcement learning -''' Contains semi-supervised learning and S3VM -''' Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field |
Beschreibung: | xix, 639 Seiten Diagramme |
ISBN: | 9781119516040 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046643054 | ||
003 | DE-604 | ||
005 | 20221205 | ||
007 | t | ||
008 | 200327s2020 |||| |||| 00||| eng d | ||
020 | |a 9781119516040 |9 978-1-119-51604-0 | ||
035 | |a (OCoLC)1193298927 | ||
035 | |a (DE-599)BVBBV046643054 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1102 |a DE-521 |a DE-703 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
100 | 1 | |a Kantardzic, Mehmed |d 1947- |e Verfasser |0 (DE-588)1244240834 |4 aut | |
245 | 1 | 0 | |a Data mining |b concepts, models, methods, and algorithms |c Mehmed Kantardzic |
250 | |a Third edition | ||
264 | 1 | |a Hoboken |b Wiley |c [2020] | |
264 | 1 | |a [New Jersey] |b IEEE Press | |
300 | |a xix, 639 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a IEEE Press | |
520 | 3 | |a Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author'a noted expert on the topic'explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: -''' Explores big data and cloud computing -''' Examines deep learning -''' Includes information on convolutional neural networks (CNN) -''' Offers reinforcement learning -''' Contains semi-supervised learning and S3VM -''' Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Data mining | |
653 | 0 | |a COMPUTERS / Databases / Data Mining | |
653 | 6 | |a Electronic books | |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4148875-1 |a Datensammlung |2 gnd-content | |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-119-51598-2 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032054393 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804181338633273344 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kantardzic, Mehmed 1947- |
author_GND | (DE-588)1244240834 |
author_facet | Kantardzic, Mehmed 1947- |
author_role | aut |
author_sort | Kantardzic, Mehmed 1947- |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV046643054 |
classification_rvk | ST 530 ST 270 |
ctrlnum | (OCoLC)1193298927 (DE-599)BVBBV046643054 |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Third edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03487nam a2200517 c 4500</leader><controlfield tag="001">BV046643054</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221205 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">200327s2020 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119516040</subfield><subfield code="9">978-1-119-51604-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193298927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046643054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1102</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kantardzic, Mehmed</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1244240834</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining</subfield><subfield code="b">concepts, models, methods, and algorithms</subfield><subfield code="c">Mehmed Kantardzic</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New Jersey]</subfield><subfield code="b">IEEE Press</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 639 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author'a noted expert on the topic'explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: -''' Explores big data and cloud computing -''' Examines deep learning -''' Includes information on convolutional neural networks (CNN) -''' Offers reinforcement learning -''' Contains semi-supervised learning and S3VM -''' Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Databases / Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4148875-1</subfield><subfield code="a">Datensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-119-51598-2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032054393</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4148875-1 Datensammlung gnd-content |
genre_facet | Einführung Datensammlung |
id | DE-604.BV046643054 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:14:44Z |
indexdate | 2024-07-10T08:50:04Z |
institution | BVB |
isbn | 9781119516040 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032054393 |
oclc_num | 1193298927 |
open_access_boolean | |
owner | DE-1102 DE-521 DE-703 |
owner_facet | DE-1102 DE-521 DE-703 |
physical | xix, 639 Seiten Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Wiley IEEE Press |
record_format | marc |
series2 | IEEE Press |
spelling | Kantardzic, Mehmed 1947- Verfasser (DE-588)1244240834 aut Data mining concepts, models, methods, and algorithms Mehmed Kantardzic Third edition Hoboken Wiley [2020] [New Jersey] IEEE Press xix, 639 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier IEEE Press Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author'a noted expert on the topic'explains the basic concepts, models, and methodologies that have been developed in recent years. This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that: -''' Explores big data and cloud computing -''' Examines deep learning -''' Includes information on convolutional neural networks (CNN) -''' Offers reinforcement learning -''' Contains semi-supervised learning and S3VM -''' Reviews model evaluation for unbalanced data Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field Data Mining (DE-588)4428654-5 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Data mining COMPUTERS / Databases / Data Mining Electronic books 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4148875-1 Datensammlung gnd-content Data Mining (DE-588)4428654-5 s 3\p DE-604 Datenanalyse (DE-588)4123037-1 s 4\p DE-604 Erscheint auch als Online-Ausgabe 978-1-119-51598-2 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kantardzic, Mehmed 1947- Data mining concepts, models, methods, and algorithms Data Mining (DE-588)4428654-5 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4123037-1 (DE-588)4151278-9 (DE-588)4148875-1 |
title | Data mining concepts, models, methods, and algorithms |
title_auth | Data mining concepts, models, methods, and algorithms |
title_exact_search | Data mining concepts, models, methods, and algorithms |
title_exact_search_txtP | Data mining concepts, models, methods, and algorithms |
title_full | Data mining concepts, models, methods, and algorithms Mehmed Kantardzic |
title_fullStr | Data mining concepts, models, methods, and algorithms Mehmed Kantardzic |
title_full_unstemmed | Data mining concepts, models, methods, and algorithms Mehmed Kantardzic |
title_short | Data mining |
title_sort | data mining concepts models methods and algorithms |
title_sub | concepts, models, methods, and algorithms |
topic | Data Mining (DE-588)4428654-5 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Data Mining Datenanalyse Einführung Datensammlung |
work_keys_str_mv | AT kantardzicmehmed dataminingconceptsmodelsmethodsandalgorithms |