Principles of artificial neural networks: basic designs to deep learning

Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neoco...

Full description

Saved in:
Bibliographic Details
Main Author: Graupe, Daniel (Author)
Format: Electronic eBook
Language:English
Published: New Jersey ; London ; Singapore World Scientific [2019]
Edition:4th edition
Series:Advanced series in circuits and systems Vol. 8
Subjects:
Online Access:FHI01
TUM01
TUM02
UBY01
FHN01
Volltext
Inhaltsverzeichnis
Summary:Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies
Physical Description:1 Online-Ressource (xvi, 422 Seiten)
ISBN:9789811201233
9789811201240
DOI:10.1142/11306

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text