Principles of artificial neural networks: basic designs to deep learning
Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neoco...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore
World Scientific
[2019]
|
Ausgabe: | 4th edition |
Schriftenreihe: | Advanced series in circuits and systems
Vol. 8 |
Schlagworte: | |
Online-Zugang: | FHI01 TUM01 TUM02 UBY01 FHN01 Volltext Inhaltsverzeichnis |
Zusammenfassung: | Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies |
Beschreibung: | 1 Online-Ressource (xvi, 422 Seiten) |
ISBN: | 9789811201233 9789811201240 |
DOI: | 10.1142/11306 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV046637041 | ||
003 | DE-604 | ||
005 | 20230601 | ||
007 | cr|uuu---uuuuu | ||
008 | 200323s2019 xxu|||| o||u| ||||||eng d | ||
020 | |a 9789811201233 |c electronic book |9 978-981-12-0123-3 | ||
020 | |a 9789811201240 |9 978-981-12-0124-0 | ||
024 | 7 | |a 10.1142/11306 |2 doi | |
035 | |a (OCoLC)1150836617 | ||
035 | |a (DE-599)KXP1684921074 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-91G |a DE-92 |a DE-706 |a DE-573 | ||
050 | 0 | |a QA76.87 | |
082 | 0 | |a 006.3/2 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a DAT 717 |2 stub | ||
100 | 1 | |a Graupe, Daniel |e Verfasser |0 (DE-588)1129263053 |4 aut | |
245 | 1 | 0 | |a Principles of artificial neural networks |b basic designs to deep learning |c Daniel Graupe, University of Illinois, Chicago, USA |
250 | |a 4th edition | ||
264 | 1 | |a New Jersey ; London ; Singapore |b World Scientific |c [2019] | |
300 | |a 1 Online-Ressource (xvi, 422 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced series in circuits and systems |v Vol. 8 | |
520 | 3 | |a Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Neural networks (Computer science) | |
653 | 0 | |a COMPUTERS / General | |
653 | 0 | |a Neural networks (Computer science) | |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-981-12-0122-6 |
856 | 4 | 0 | |u https://doi.org/10.1142/11306 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m DE-601 |q pdf/application |u https://www.gbv.de/dms/bowker/toc/9789811201226.pdf |v 2020-01-19 |x Aggregator |3 Inhaltsverzeichnis |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032048475 | ||
966 | e | |u https://doi.org/10.1142/11306 |l FHI01 |p ZDB-124-WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/11306 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/11306 |l TUM02 |p ZDB-124-WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/11306 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext | |
966 | e | |u https://www.worldscientific.com/worldscibooks/10.1142/11306 |l FHN01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181328026927104 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Graupe, Daniel |
author_GND | (DE-588)1129263053 |
author_facet | Graupe, Daniel |
author_role | aut |
author_sort | Graupe, Daniel |
author_variant | d g dg |
building | Verbundindex |
bvnumber | BV046637041 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 |
callnumber-search | QA76.87 |
callnumber-sort | QA 276.87 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 301 |
classification_tum | DAT 717 |
collection | ZDB-124-WOP |
ctrlnum | (OCoLC)1150836617 (DE-599)KXP1684921074 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1142/11306 |
edition | 4th edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02923nmm a2200565 cb4500</leader><controlfield tag="001">BV046637041</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230601 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200323s2019 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811201233</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-981-12-0123-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811201240</subfield><subfield code="9">978-981-12-0124-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11306</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1150836617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1684921074</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graupe, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1129263053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of artificial neural networks</subfield><subfield code="b">basic designs to deep learning</subfield><subfield code="c">Daniel Graupe, University of Illinois, Chicago, USA</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4th edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 422 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series in circuits and systems</subfield><subfield code="v">Vol. 8</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-12-0122-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/11306</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/bowker/toc/9789811201226.pdf</subfield><subfield code="v">2020-01-19</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032048475</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/11306</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/11306</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/11306</subfield><subfield code="l">TUM02</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/11306</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11306</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046637041 |
illustrated | Not Illustrated |
index_date | 2024-07-03T14:13:17Z |
indexdate | 2024-07-10T08:49:54Z |
institution | BVB |
isbn | 9789811201233 9789811201240 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032048475 |
oclc_num | 1150836617 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-92 DE-706 DE-573 |
owner_facet | DE-91G DE-BY-TUM DE-92 DE-706 DE-573 |
physical | 1 Online-Ressource (xvi, 422 Seiten) |
psigel | ZDB-124-WOP ZDB-124-WOP TUM_Einzelkauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | World Scientific |
record_format | marc |
series2 | Advanced series in circuits and systems |
spelling | Graupe, Daniel Verfasser (DE-588)1129263053 aut Principles of artificial neural networks basic designs to deep learning Daniel Graupe, University of Illinois, Chicago, USA 4th edition New Jersey ; London ; Singapore World Scientific [2019] 1 Online-Ressource (xvi, 422 Seiten) txt rdacontent c rdamedia cr rdacarrier Advanced series in circuits and systems Vol. 8 Introduction and role of artificial neural networks -- Fundamentals of biological neural networks -- Basic principles of ANNs and their structures -- The perceptron -- The madaline -- Back propagation -- Hopfield networks -- Counter propagation -- Adaptive resonance theory -- The cognitron and neocognition -- Statistical training -- Recurrent (time cycling) back propagation networks -- Deep learning neural networks : principles and scope -- Deep learning convolutional neural network -- LAMSTAR neural networks -- Performance of DLNN : comparative case studies Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Neural networks (Computer science) COMPUTERS / General Electronic books Neuronales Netz (DE-588)4226127-2 s DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-981-12-0122-6 https://doi.org/10.1142/11306 Verlag URL des Erstveröffentlichers Volltext DE-601 pdf/application https://www.gbv.de/dms/bowker/toc/9789811201226.pdf 2020-01-19 Aggregator Inhaltsverzeichnis |
spellingShingle | Graupe, Daniel Principles of artificial neural networks basic designs to deep learning Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4226127-2 |
title | Principles of artificial neural networks basic designs to deep learning |
title_auth | Principles of artificial neural networks basic designs to deep learning |
title_exact_search | Principles of artificial neural networks basic designs to deep learning |
title_exact_search_txtP | Principles of artificial neural networks basic designs to deep learning |
title_full | Principles of artificial neural networks basic designs to deep learning Daniel Graupe, University of Illinois, Chicago, USA |
title_fullStr | Principles of artificial neural networks basic designs to deep learning Daniel Graupe, University of Illinois, Chicago, USA |
title_full_unstemmed | Principles of artificial neural networks basic designs to deep learning Daniel Graupe, University of Illinois, Chicago, USA |
title_short | Principles of artificial neural networks |
title_sort | principles of artificial neural networks basic designs to deep learning |
title_sub | basic designs to deep learning |
topic | Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Neuronales Netz |
url | https://doi.org/10.1142/11306 https://www.gbv.de/dms/bowker/toc/9789811201226.pdf |
work_keys_str_mv | AT graupedaniel principlesofartificialneuralnetworksbasicdesignstodeeplearning |