Optical and Wireless Convergence for 5G Networks:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2020
IEEE Press |
Schlagworte: | |
Beschreibung: | About the Editors ii; Contributors v; Preface xxvii; Acknowledgments i; Introduction iii; 1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1; Isiaka Ajewale Alimi, Nelson Jesus Muga, Abdelgader M. - Abdalla, Catia Pinho, Jonathan Rodriguez, Paulo Pereira Monteiro, - Antonio Lucios Teixeira; 1.1 Introduction 2; 1.2 Cellular Network Interface and Solution 3; 1.2.1 MBH/MFH Architecture 3; 1.2.2 Integrated MBH/MFH Transport Network 5; 1.3 5G Enabling Technologies 5; 1.3.1 Ultra-Densication 6; 1.3.2 C-RAN and RAN Virtualization 6; 1.3.3 Advanced radio coordination 8; 1.3.4 Millimeter-Wave Small Cells 9; 1.3.5 Massive MIMO 10; 1.3.6 New Multicarrier Modulations for 5G 10; 1.4 Fiber-Wireless Network Convergence 11; 1.5 Radio-over-Fiber Transmission Scheme 12; 1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12; 1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13; 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14; 1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14; 1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15; 1.7 Wireless based MFH/MBH 18; 1.7.1 FSO Communication Systems 18; 1.7.2 Hybrid RF/FSO Technology 21; 1.7.3 Relay-Assisted FSO Transmission 22; 1.8 Experimental Channel measurement and characterization 23; - 1.9 Results and Discussions 24; 1.10 Conclusion 24; Acknowledgments 24; Bibliography 25; 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31; Rattana Chuenchom, Andreas Ste_an, Robert G. Walker, Stephen J. - Clements, Yigal Leiba, Andrzej Banach, Mateusz Lech, Andreas Stohr; 2.1 Passive Optical Network 32; 2.1.1 GPON and EPON standard 33; 2.2 Transparent Wireless Extension of Optical Links 34; 2.2.1 Transparent wireless extension of optical links using CRoF 34; 2.3 Key Enabling Photonic and Electronic Technologies 36; 2.3.1 Coherent Photonic Mixer 36; 2.3.2 Single side band Mach-Zehnder modulator 38; 2.3.3 High power amplifier in E-band for GPON extension 40; 2.3.4 Integrated radio access units 42; 2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43; 2.4.1 RX Throughput and packet loss 48; 2.4.2 Latency 48; 2.4.3 Jitter 49; 2.5 Conclusions 49; Bibliography 50; 3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53; Marco Rumi , - Frank Slyne; 3.1 Introduction 53; 3.2 The 5G requirements driving network convergence and virtualisation 54; 3.3 Access and metro convergence 57; 3.3.1 Long-Reach Passive Optical Network 58; 3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59; 3.4 Functional convergence and virtualisation of the central offices 62; 3.4.1 Infrastructure 63; 3.4.2 Management and Control 66; 3.4.3 Cross-Layer Components 70; 3.5 Conclusions 70; Bibliography 70; 4 Multicore Fibres for 5G Fronthaul Evolution 77; Ivana Gasulla, - Jose Capmany; 4.1 Why 5G communications demand for optical Space-Division Multiplexing 77; 4.2 Multicore Fibre Transmission Review 79; 4.2.1 Homogeneous MCFs 80; 4.2.2 Heterogeneous MCFs 81; 4.3 Radio Access Networks using Multicore Fibre Links 82; 4.3.1 Basic MCF link between Central O_ce and Base Station 84; 4.3.2 MCF-based Radio over Fibre C-RAN 85; 4.3.3 MCF-based Digital Radio over Fibre C-RAN 87; 4.4 Microwave signal processing enabled by multicore fibres 88; 4.4.1 Signal Processing over a Heterogeneous MCF link 90; 4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92; 4.5 Final Remarks 94; Bibliography 95; 5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99; Isiaka Ajewale Alimi, Abdelgader M. - Abdalla, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Lu__s Teixeira, Stanislav Zv_anovec, Zabih Ghassemlooy; 5.1 Introduction 100; 5.2 Optical Wireless Systems 102; 5.3 Visible Light Communication (VLC) System Fundamentals 104; 5.4 VLC Current and Anticipated Future Applications 107; 5.4.1 Underwater Wireless Communications 109; 5.4.2 Airlines and Aviation 109; 5.4.3 Hospitals 110; 5.4.4 Vehicular Communication Systems 110; 5.4.5 Sensitive Areas 111; 5.4.6 Manufacturing and Industrial Applications 111; 5.4.7 Retail Stores 112; 5.4.8 Consumer Electronics 112; 5.4.9 Internet of Things 112; 5.4.10 Other Application Areas 113; 5.5 Hybrid VLC and RF Networks 113; 5.6 Challenges and Open-Ended Issues 114; 5.6.1 Flicker and Dimming 115; 5.6.2 Data Rate Improvement 115; 5.7 Conclusions 116; Acknowledgments 116; Bibliography 117; 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123; Hassan Hamdoun, Mohamed Hamid, Shoaib Amin, - Hind Dafallah; 6.1 Introduction 123; 6.2 5G NR-enabled Use Cases 124; 6.2.1 eMBB and uRLLC 125; 6.2.2 Migration to 5G 126; 6.3 5G RAN Radio-enabling Technologies 126; 6.3.1 Massive MIMO (M-MIMO) 127; 6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130; 6.3.3 Dual Connectivity 131; 6.3.4 Device-to-Device (D2D) communication 132; 6.4 Hardware Impairments 132; 6.4.1 Hardware Impairments-Transmitters 133; 6.4.2 Hardware Impairments - Receivers 135; 6.4.3 Hardware Impairments - Transceivers 135; 6.5 Technology and Fabrication challenges 136; 6.6 Conclusion 137; Bibliography 137; 7 Millimeter Wave Antenna Design for 5G Applications 143; Issa Elfergani, Abubakar Sadiq Hussaini, Abdelgader Abdalla, Jonathan Rodriguez, - Raed Abd-Alhameed; 7.1 Introduction 144; 7.2 Antenna Design and Procedure 146; 7.3 Antenna Optimisation and Analysis 147; 7.3.1 The inuence of ground plane length (GL) 148; 7.3.2 The effect of feeding strip position (Fp) 148; 7.3.3 The inuences of the substrate type 149; 7.4 MMwave Antenna Design with notched frequency band 150; 7.5 MMwave Antenna Design with Loaded Capacitor 153; 7.6 Conclusion 156; Acknowledgement 156; Bibliography 156; 8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161; Pham Tien Dat, Atsushi Kanno, Naokatsu Yamamoto, Testuya Kawanishi; 8.1 Introduction 161; 8.2 Principle of signal encapsulation 163; 8.2.1 Downlink system 163; 8.2.2 Uplink system 165; 8.3 Examples of signal encapsulation 166; 8.3.1 Downlink transmission 166; 8.3.2 Uplink transmission 170; 8.3.3 MmWave link distance 173; 8.3.4 Conclusion 175; Bibliography 176; 9 5G Optical Sensing Technologies 179; Seedahmed S. - Mahmoud , Bernhard Koziol, Jusak Jusak; 9.1 Introduction 179; 9.2 Optical Fibre Communication Network: Intrusion Methods 182; 9.3 Physical Protection of Optical Fibre Communication Cables 183; 9.3.1 Location-Based Optical Fibre Sensors 185; 9.3.2 Point-Based Optical Fibre Sensors 187; 9.3.3 Zone-Based Optical Fibre Sensors 189; 9.4 Design Consideration and Performance Characteristics 190; 9.4.1 Performance Parameters 190; 9.4.2 The Needs for Robust Signal Processing Methods 191; 9.4.3 System Installation and Technology Suitability 192; 9.5 Conclusions 193; Bibliography 193; 10 The Tactile Internet over 5G FiWi Architectures 197; Amin Ebrahimzadeh, Mahfuzulhoq Chowdhury, - Martin Maier; 10.1 Introduction 197; 10.2 The Tactile Internet: State of the Art and Open Challenges 203; 10.3 Related Work 206; 10.4 HITL-Centric Teleoperation over AI Enhanced FiWi Networks 207; 10.5 HART-Centric Task Allocation over Multi-Robot FiWi based Tactile Internet Infrastructures 212; 10.6 Conclusions 217; Bibliography 218; 11 Energy Efficiency in Cloud Radio Access Network (C-RAN) for 5G Mobile Networks:; Opportunities and Challenges 223; Isiaka Ajewale Alimi, Abdelgader M. - Abdalla, Akeem Olapade Mufutau, Fernando Pereira Guiomar, Ifiok Otung, Jonathan Rodriguez, Paulo Pereira Monteiro, Ant_onio Lu__s Teixeira; 11.1 Introduction 224; 11.1.1 Environmental effects 225; 11.1.2 Economic benefits 225; 11.2 Standardized Energy Efficiency Metric (Green metric) 228; 11.2.1 Power per subscriber, - tra_c and distance/area 229; 11.2.2 Energy consumption rating (ECR) measured in Watt/Gbps 229; 11.2.3 Telecommunications energy efficiency ratio (TEER) 230; 11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) 230; 11.3 Green Design for Energy Crunch Prevention in 5G networks 230; 11.3.1 Hardware solutions 231; 11.3.2 Network planning and deployment 232; 11.3.3 Resource allocation 233; 11.3.4 Energy harvesting (EH) and transfer 233; 11.4 Fiber-based Energy Efficient Network 235; 11.4.1 Zero Power RAU PoF Network 236; 11.4.2 Battery Powered RRH PoF Network 236; 11.5 System and Power Consumption Model 237; 11.5.1 Remote unit power consumption 239; 11.5.2 Centralized unit power consumption 239; 11.5.3 Fronthaul power consumption 239; 11.5.4 Massive MIMO energy efficiency 240; 11.6 Simulation Results and Discussions 242; 11.7 Conclusion 242; Acknowledgments 243; Bibliography 243; 12 Fog Computing Enhanced Fiber-Wireless Access Networks in the 5G Era 247; Bhaskar Prasad - Rimal, Martin Maier; 12.1 Background and Motivation 247; 12.1.1 Next-Generation PON and Beyond 247; 12.1.2 FiWi Broadband Access Networks 250; 12.1.3 Role of Fog Computing 251; 12.1.4 Computation Offloading 251; 12.1.5 Key Issues and Contributions 253; 12.2 Fog Computing Enhanced FiWi Networks 255; 12.2.1 Network Architecture 255; 12.2.2 Protocol Description 255; 12.3 Analysis 256; 12.3.1 Survivability Analysis 256; 12.3.2 End-to-End Delay Analysis 258; 12.4 Implementation and Validation 259; 12.4.1 Experimental Testbed 259; 12.4.2 Results 260; 12.5 Conclusions and Outlook 262; 12.5.1 Conclusions 262; 12.5.2 Outlook 262; Bibliography 263; 13 Techno-economic and Business Feasibility Analysis of 5G Transport Networks 267; Forough Yaghoubi, Mozhgan Mahloo, Lena Wosinska, Paolo Monti, Fabricio S. Farias, Joao C. W. A. - Costa, Jiajia Chen; 13.1 Introduction 268; 13.2 Mobile Backhaul Technologies 270; 13.3 Techno-economic Framework 272; 13.3.1 Architecture Module 274; 13.3.2 Topology Module 274; 13.3.3 Market Module 274; 13.3.4 Network Dimensioning Tool 274; 13.3.5 Cost Module 275; 13.3.6 Total Cost of Ownership (TCO) Module 275; 13.3.7 Business Models and Scenarios 277; 13.3.8 Techno-economic Module 278; 13.4 Case Study 278; 13.4.1 Applic |
Beschreibung: | xli, 308 pages illustrations 250 grams |
ISBN: | 9781119491583 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046262646 | ||
003 | DE-604 | ||
005 | 20191213 | ||
007 | t | ||
008 | 191119s2020 a||| |||| 00||| eng d | ||
020 | |a 9781119491583 |9 978-1-119-49158-3 | ||
024 | 3 | |a 9781119491583 | |
035 | |a (OCoLC)1135389285 | ||
035 | |a (DE-599)BVBBV046262646 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
245 | 1 | 0 | |a Optical and Wireless Convergence for 5G Networks |c edited by Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2020 | |
264 | 1 | |b IEEE Press | |
300 | |a xli, 308 pages |b illustrations |c 250 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a About the Editors ii; Contributors v; Preface xxvii; Acknowledgments i; Introduction iii; 1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1; Isiaka Ajewale Alimi, Nelson Jesus Muga, Abdelgader M. | ||
500 | |a - Abdalla, Catia Pinho, Jonathan Rodriguez, Paulo Pereira Monteiro, | ||
500 | |a - Antonio Lucios Teixeira; 1.1 Introduction 2; 1.2 Cellular Network Interface and Solution 3; 1.2.1 MBH/MFH Architecture 3; 1.2.2 Integrated MBH/MFH Transport Network 5; 1.3 5G Enabling Technologies 5; 1.3.1 Ultra-Densication 6; 1.3.2 C-RAN and RAN Virtualization 6; 1.3.3 Advanced radio coordination 8; 1.3.4 Millimeter-Wave Small Cells 9; 1.3.5 Massive MIMO 10; 1.3.6 New Multicarrier Modulations for 5G 10; 1.4 Fiber-Wireless Network Convergence 11; 1.5 Radio-over-Fiber Transmission Scheme 12; 1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12; 1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13; 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14; 1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14; 1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15; 1.7 Wireless based MFH/MBH 18; 1.7.1 FSO Communication Systems 18; 1.7.2 Hybrid RF/FSO Technology 21; 1.7.3 Relay-Assisted FSO Transmission 22; 1.8 Experimental Channel measurement and characterization 23; | ||
500 | |a - 1.9 Results and Discussions 24; 1.10 Conclusion 24; Acknowledgments 24; Bibliography 25; 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31; Rattana Chuenchom, Andreas Ste_an, Robert G. Walker, Stephen J. | ||
500 | |a - Clements, Yigal Leiba, Andrzej Banach, Mateusz Lech, Andreas Stohr; 2.1 Passive Optical Network 32; 2.1.1 GPON and EPON standard 33; 2.2 Transparent Wireless Extension of Optical Links 34; 2.2.1 Transparent wireless extension of optical links using CRoF 34; 2.3 Key Enabling Photonic and Electronic Technologies 36; 2.3.1 Coherent Photonic Mixer 36; 2.3.2 Single side band Mach-Zehnder modulator 38; 2.3.3 High power amplifier in E-band for GPON extension 40; 2.3.4 Integrated radio access units 42; 2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43; 2.4.1 RX Throughput and packet loss 48; 2.4.2 Latency 48; 2.4.3 Jitter 49; 2.5 Conclusions 49; Bibliography 50; 3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53; Marco Rumi , | ||
500 | |a - Frank Slyne; 3.1 Introduction 53; 3.2 The 5G requirements driving network convergence and virtualisation 54; 3.3 Access and metro convergence 57; 3.3.1 Long-Reach Passive Optical Network 58; 3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59; 3.4 Functional convergence and virtualisation of the central offices 62; 3.4.1 Infrastructure 63; 3.4.2 Management and Control 66; 3.4.3 Cross-Layer Components 70; 3.5 Conclusions 70; Bibliography 70; 4 Multicore Fibres for 5G Fronthaul Evolution 77; Ivana Gasulla, | ||
500 | |a - Jose Capmany; 4.1 Why 5G communications demand for optical Space-Division Multiplexing 77; 4.2 Multicore Fibre Transmission Review 79; 4.2.1 Homogeneous MCFs 80; 4.2.2 Heterogeneous MCFs 81; 4.3 Radio Access Networks using Multicore Fibre Links 82; 4.3.1 Basic MCF link between Central O_ce and Base Station 84; 4.3.2 MCF-based Radio over Fibre C-RAN 85; 4.3.3 MCF-based Digital Radio over Fibre C-RAN 87; 4.4 Microwave signal processing enabled by multicore fibres 88; 4.4.1 Signal Processing over a Heterogeneous MCF link 90; 4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92; 4.5 Final Remarks 94; Bibliography 95; 5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99; Isiaka Ajewale Alimi, Abdelgader M. | ||
500 | |a - Abdalla, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Lu__s Teixeira, Stanislav Zv_anovec, Zabih Ghassemlooy; 5.1 Introduction 100; 5.2 Optical Wireless Systems 102; 5.3 Visible Light Communication (VLC) System Fundamentals 104; 5.4 VLC Current and Anticipated Future Applications 107; 5.4.1 Underwater Wireless Communications 109; 5.4.2 Airlines and Aviation 109; 5.4.3 Hospitals 110; 5.4.4 Vehicular Communication Systems 110; 5.4.5 Sensitive Areas 111; 5.4.6 Manufacturing and Industrial Applications 111; 5.4.7 Retail Stores 112; 5.4.8 Consumer Electronics 112; 5.4.9 Internet of Things 112; 5.4.10 Other Application Areas 113; 5.5 Hybrid VLC and RF Networks 113; 5.6 Challenges and Open-Ended Issues 114; 5.6.1 Flicker and Dimming 115; 5.6.2 Data Rate Improvement 115; 5.7 Conclusions 116; Acknowledgments 116; Bibliography 117; 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123; Hassan Hamdoun, Mohamed Hamid, Shoaib Amin, | ||
500 | |a - Hind Dafallah; 6.1 Introduction 123; 6.2 5G NR-enabled Use Cases 124; 6.2.1 eMBB and uRLLC 125; 6.2.2 Migration to 5G 126; 6.3 5G RAN Radio-enabling Technologies 126; 6.3.1 Massive MIMO (M-MIMO) 127; 6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130; 6.3.3 Dual Connectivity 131; 6.3.4 Device-to-Device (D2D) communication 132; 6.4 Hardware Impairments 132; 6.4.1 Hardware Impairments-Transmitters 133; 6.4.2 Hardware Impairments - Receivers 135; 6.4.3 Hardware Impairments - Transceivers 135; 6.5 Technology and Fabrication challenges 136; 6.6 Conclusion 137; Bibliography 137; 7 Millimeter Wave Antenna Design for 5G Applications 143; Issa Elfergani, Abubakar Sadiq Hussaini, Abdelgader Abdalla, Jonathan Rodriguez, | ||
500 | |a - Raed Abd-Alhameed; 7.1 Introduction 144; 7.2 Antenna Design and Procedure 146; 7.3 Antenna Optimisation and Analysis 147; 7.3.1 The inuence of ground plane length (GL) 148; 7.3.2 The effect of feeding strip position (Fp) 148; 7.3.3 The inuences of the substrate type 149; 7.4 MMwave Antenna Design with notched frequency band 150; 7.5 MMwave Antenna Design with Loaded Capacitor 153; 7.6 Conclusion 156; Acknowledgement 156; Bibliography 156; 8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161; Pham Tien Dat, Atsushi Kanno, Naokatsu Yamamoto, Testuya Kawanishi; 8.1 Introduction 161; 8.2 Principle of signal encapsulation 163; 8.2.1 Downlink system 163; 8.2.2 Uplink system 165; 8.3 Examples of signal encapsulation 166; 8.3.1 Downlink transmission 166; 8.3.2 Uplink transmission 170; 8.3.3 MmWave link distance 173; 8.3.4 Conclusion 175; Bibliography 176; 9 5G Optical Sensing Technologies 179; Seedahmed S. | ||
500 | |a - Mahmoud , Bernhard Koziol, Jusak Jusak; 9.1 Introduction 179; 9.2 Optical Fibre Communication Network: Intrusion Methods 182; 9.3 Physical Protection of Optical Fibre Communication Cables 183; 9.3.1 Location-Based Optical Fibre Sensors 185; 9.3.2 Point-Based Optical Fibre Sensors 187; 9.3.3 Zone-Based Optical Fibre Sensors 189; 9.4 Design Consideration and Performance Characteristics 190; 9.4.1 Performance Parameters 190; 9.4.2 The Needs for Robust Signal Processing Methods 191; 9.4.3 System Installation and Technology Suitability 192; 9.5 Conclusions 193; Bibliography 193; 10 The Tactile Internet over 5G FiWi Architectures 197; Amin Ebrahimzadeh, Mahfuzulhoq Chowdhury, | ||
500 | |a - Martin Maier; 10.1 Introduction 197; 10.2 The Tactile Internet: State of the Art and Open Challenges 203; 10.3 Related Work 206; 10.4 HITL-Centric Teleoperation over AI Enhanced FiWi Networks 207; 10.5 HART-Centric Task Allocation over Multi-Robot FiWi based Tactile Internet Infrastructures 212; 10.6 Conclusions 217; Bibliography 218; 11 Energy Efficiency in Cloud Radio Access Network (C-RAN) for 5G Mobile Networks:; Opportunities and Challenges 223; Isiaka Ajewale Alimi, Abdelgader M. | ||
500 | |a - Abdalla, Akeem Olapade Mufutau, Fernando Pereira Guiomar, Ifiok Otung, Jonathan Rodriguez, Paulo Pereira Monteiro, Ant_onio Lu__s Teixeira; 11.1 Introduction 224; 11.1.1 Environmental effects 225; 11.1.2 Economic benefits 225; 11.2 Standardized Energy Efficiency Metric (Green metric) 228; 11.2.1 Power per subscriber, | ||
500 | |a - tra_c and distance/area 229; 11.2.2 Energy consumption rating (ECR) measured in Watt/Gbps 229; 11.2.3 Telecommunications energy efficiency ratio (TEER) 230; 11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) 230; 11.3 Green Design for Energy Crunch Prevention in 5G networks 230; 11.3.1 Hardware solutions 231; 11.3.2 Network planning and deployment 232; 11.3.3 Resource allocation 233; 11.3.4 Energy harvesting (EH) and transfer 233; 11.4 Fiber-based Energy Efficient Network 235; 11.4.1 Zero Power RAU PoF Network 236; 11.4.2 Battery Powered RRH PoF Network 236; 11.5 System and Power Consumption Model 237; 11.5.1 Remote unit power consumption 239; 11.5.2 Centralized unit power consumption 239; 11.5.3 Fronthaul power consumption 239; 11.5.4 Massive MIMO energy efficiency 240; 11.6 Simulation Results and Discussions 242; 11.7 Conclusion 242; Acknowledgments 243; Bibliography 243; 12 Fog Computing Enhanced Fiber-Wireless Access Networks in the 5G Era 247; Bhaskar Prasad | ||
500 | |a - Rimal, Martin Maier; 12.1 Background and Motivation 247; 12.1.1 Next-Generation PON and Beyond 247; 12.1.2 FiWi Broadband Access Networks 250; 12.1.3 Role of Fog Computing 251; 12.1.4 Computation Offloading 251; 12.1.5 Key Issues and Contributions 253; 12.2 Fog Computing Enhanced FiWi Networks 255; 12.2.1 Network Architecture 255; 12.2.2 Protocol Description 255; 12.3 Analysis 256; 12.3.1 Survivability Analysis 256; 12.3.2 End-to-End Delay Analysis 258; 12.4 Implementation and Validation 259; 12.4.1 Experimental Testbed 259; 12.4.2 Results 260; 12.5 Conclusions and Outlook 262; 12.5.1 Conclusions 262; 12.5.2 Outlook 262; Bibliography 263; 13 Techno-economic and Business Feasibility Analysis of 5G Transport Networks 267; Forough Yaghoubi, Mozhgan Mahloo, Lena Wosinska, Paolo Monti, Fabricio S. Farias, Joao C. W. A. | ||
500 | |a - Costa, Jiajia Chen; 13.1 Introduction 268; 13.2 Mobile Backhaul Technologies 270; 13.3 Techno-economic Framework 272; 13.3.1 Architecture Module 274; 13.3.2 Topology Module 274; 13.3.3 Market Module 274; 13.3.4 Network Dimensioning Tool 274; 13.3.5 Cost Module 275; 13.3.6 Total Cost of Ownership (TCO) Module 275; 13.3.7 Business Models and Scenarios 277; 13.3.8 Techno-economic Module 278; 13.4 Case Study 278; 13.4.1 Applic | ||
650 | 4 | |a bisacsh / TECHNOLOGY & ENGINEERING / Telecommunications | |
650 | 4 | |a Mobile communication systems | |
650 | 4 | |a Optical communications - Technological innovations | |
700 | 1 | |a Abdalla, Abdelgader M. |d 1970- |0 (DE-588)1199066796 |4 edt | |
700 | 1 | |a Rodriguez, Jonathan |4 edt | |
700 | 1 | |a Elfergani, Issa |4 edt | |
700 | 1 | |a Teixeira, Antonio |4 edt | |
999 | |a oai:aleph.bib-bvb.de:BVB01-031640622 |
Datensatz im Suchindex
_version_ | 1804180699060633600 |
---|---|
any_adam_object | |
author2 | Abdalla, Abdelgader M. 1970- Rodriguez, Jonathan Elfergani, Issa Teixeira, Antonio |
author2_role | edt edt edt edt |
author2_variant | a m a am ama j r jr i e ie a t at |
author_GND | (DE-588)1199066796 |
author_facet | Abdalla, Abdelgader M. 1970- Rodriguez, Jonathan Elfergani, Issa Teixeira, Antonio |
building | Verbundindex |
bvnumber | BV046262646 |
ctrlnum | (OCoLC)1135389285 (DE-599)BVBBV046262646 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11533nam a2200541 c 4500</leader><controlfield tag="001">BV046262646</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191213 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">191119s2020 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119491583</subfield><subfield code="9">978-1-119-49158-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781119491583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1135389285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046262646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical and Wireless Convergence for 5G Networks</subfield><subfield code="c">edited by Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">IEEE Press</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xli, 308 pages</subfield><subfield code="b">illustrations</subfield><subfield code="c">250 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">About the Editors ii; Contributors v; Preface xxvii; Acknowledgments i; Introduction iii; 1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1; Isiaka Ajewale Alimi, Nelson Jesus Muga, Abdelgader M. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Abdalla, Catia Pinho, Jonathan Rodriguez, Paulo Pereira Monteiro, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Antonio Lucios Teixeira; 1.1 Introduction 2; 1.2 Cellular Network Interface and Solution 3; 1.2.1 MBH/MFH Architecture 3; 1.2.2 Integrated MBH/MFH Transport Network 5; 1.3 5G Enabling Technologies 5; 1.3.1 Ultra-Densication 6; 1.3.2 C-RAN and RAN Virtualization 6; 1.3.3 Advanced radio coordination 8; 1.3.4 Millimeter-Wave Small Cells 9; 1.3.5 Massive MIMO 10; 1.3.6 New Multicarrier Modulations for 5G 10; 1.4 Fiber-Wireless Network Convergence 11; 1.5 Radio-over-Fiber Transmission Scheme 12; 1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12; 1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13; 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14; 1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14; 1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15; 1.7 Wireless based MFH/MBH 18; 1.7.1 FSO Communication Systems 18; 1.7.2 Hybrid RF/FSO Technology 21; 1.7.3 Relay-Assisted FSO Transmission 22; 1.8 Experimental Channel measurement and characterization 23; </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 1.9 Results and Discussions 24; 1.10 Conclusion 24; Acknowledgments 24; Bibliography 25; 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31; Rattana Chuenchom, Andreas Ste_an, Robert G. Walker, Stephen J. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Clements, Yigal Leiba, Andrzej Banach, Mateusz Lech, Andreas Stohr; 2.1 Passive Optical Network 32; 2.1.1 GPON and EPON standard 33; 2.2 Transparent Wireless Extension of Optical Links 34; 2.2.1 Transparent wireless extension of optical links using CRoF 34; 2.3 Key Enabling Photonic and Electronic Technologies 36; 2.3.1 Coherent Photonic Mixer 36; 2.3.2 Single side band Mach-Zehnder modulator 38; 2.3.3 High power amplifier in E-band for GPON extension 40; 2.3.4 Integrated radio access units 42; 2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43; 2.4.1 RX Throughput and packet loss 48; 2.4.2 Latency 48; 2.4.3 Jitter 49; 2.5 Conclusions 49; Bibliography 50; 3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53; Marco Rumi , </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Frank Slyne; 3.1 Introduction 53; 3.2 The 5G requirements driving network convergence and virtualisation 54; 3.3 Access and metro convergence 57; 3.3.1 Long-Reach Passive Optical Network 58; 3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59; 3.4 Functional convergence and virtualisation of the central offices 62; 3.4.1 Infrastructure 63; 3.4.2 Management and Control 66; 3.4.3 Cross-Layer Components 70; 3.5 Conclusions 70; Bibliography 70; 4 Multicore Fibres for 5G Fronthaul Evolution 77; Ivana Gasulla, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Jose Capmany; 4.1 Why 5G communications demand for optical Space-Division Multiplexing 77; 4.2 Multicore Fibre Transmission Review 79; 4.2.1 Homogeneous MCFs 80; 4.2.2 Heterogeneous MCFs 81; 4.3 Radio Access Networks using Multicore Fibre Links 82; 4.3.1 Basic MCF link between Central O_ce and Base Station 84; 4.3.2 MCF-based Radio over Fibre C-RAN 85; 4.3.3 MCF-based Digital Radio over Fibre C-RAN 87; 4.4 Microwave signal processing enabled by multicore fibres 88; 4.4.1 Signal Processing over a Heterogeneous MCF link 90; 4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92; 4.5 Final Remarks 94; Bibliography 95; 5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99; Isiaka Ajewale Alimi, Abdelgader M. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Abdalla, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Lu__s Teixeira, Stanislav Zv_anovec, Zabih Ghassemlooy; 5.1 Introduction 100; 5.2 Optical Wireless Systems 102; 5.3 Visible Light Communication (VLC) System Fundamentals 104; 5.4 VLC Current and Anticipated Future Applications 107; 5.4.1 Underwater Wireless Communications 109; 5.4.2 Airlines and Aviation 109; 5.4.3 Hospitals 110; 5.4.4 Vehicular Communication Systems 110; 5.4.5 Sensitive Areas 111; 5.4.6 Manufacturing and Industrial Applications 111; 5.4.7 Retail Stores 112; 5.4.8 Consumer Electronics 112; 5.4.9 Internet of Things 112; 5.4.10 Other Application Areas 113; 5.5 Hybrid VLC and RF Networks 113; 5.6 Challenges and Open-Ended Issues 114; 5.6.1 Flicker and Dimming 115; 5.6.2 Data Rate Improvement 115; 5.7 Conclusions 116; Acknowledgments 116; Bibliography 117; 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123; Hassan Hamdoun, Mohamed Hamid, Shoaib Amin, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Hind Dafallah; 6.1 Introduction 123; 6.2 5G NR-enabled Use Cases 124; 6.2.1 eMBB and uRLLC 125; 6.2.2 Migration to 5G 126; 6.3 5G RAN Radio-enabling Technologies 126; 6.3.1 Massive MIMO (M-MIMO) 127; 6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130; 6.3.3 Dual Connectivity 131; 6.3.4 Device-to-Device (D2D) communication 132; 6.4 Hardware Impairments 132; 6.4.1 Hardware Impairments-Transmitters 133; 6.4.2 Hardware Impairments - Receivers 135; 6.4.3 Hardware Impairments - Transceivers 135; 6.5 Technology and Fabrication challenges 136; 6.6 Conclusion 137; Bibliography 137; 7 Millimeter Wave Antenna Design for 5G Applications 143; Issa Elfergani, Abubakar Sadiq Hussaini, Abdelgader Abdalla, Jonathan Rodriguez, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Raed Abd-Alhameed; 7.1 Introduction 144; 7.2 Antenna Design and Procedure 146; 7.3 Antenna Optimisation and Analysis 147; 7.3.1 The inuence of ground plane length (GL) 148; 7.3.2 The effect of feeding strip position (Fp) 148; 7.3.3 The inuences of the substrate type 149; 7.4 MMwave Antenna Design with notched frequency band 150; 7.5 MMwave Antenna Design with Loaded Capacitor 153; 7.6 Conclusion 156; Acknowledgement 156; Bibliography 156; 8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161; Pham Tien Dat, Atsushi Kanno, Naokatsu Yamamoto, Testuya Kawanishi; 8.1 Introduction 161; 8.2 Principle of signal encapsulation 163; 8.2.1 Downlink system 163; 8.2.2 Uplink system 165; 8.3 Examples of signal encapsulation 166; 8.3.1 Downlink transmission 166; 8.3.2 Uplink transmission 170; 8.3.3 MmWave link distance 173; 8.3.4 Conclusion 175; Bibliography 176; 9 5G Optical Sensing Technologies 179; Seedahmed S. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Mahmoud , Bernhard Koziol, Jusak Jusak; 9.1 Introduction 179; 9.2 Optical Fibre Communication Network: Intrusion Methods 182; 9.3 Physical Protection of Optical Fibre Communication Cables 183; 9.3.1 Location-Based Optical Fibre Sensors 185; 9.3.2 Point-Based Optical Fibre Sensors 187; 9.3.3 Zone-Based Optical Fibre Sensors 189; 9.4 Design Consideration and Performance Characteristics 190; 9.4.1 Performance Parameters 190; 9.4.2 The Needs for Robust Signal Processing Methods 191; 9.4.3 System Installation and Technology Suitability 192; 9.5 Conclusions 193; Bibliography 193; 10 The Tactile Internet over 5G FiWi Architectures 197; Amin Ebrahimzadeh, Mahfuzulhoq Chowdhury, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Martin Maier; 10.1 Introduction 197; 10.2 The Tactile Internet: State of the Art and Open Challenges 203; 10.3 Related Work 206; 10.4 HITL-Centric Teleoperation over AI Enhanced FiWi Networks 207; 10.5 HART-Centric Task Allocation over Multi-Robot FiWi based Tactile Internet Infrastructures 212; 10.6 Conclusions 217; Bibliography 218; 11 Energy Efficiency in Cloud Radio Access Network (C-RAN) for 5G Mobile Networks:; Opportunities and Challenges 223; Isiaka Ajewale Alimi, Abdelgader M. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Abdalla, Akeem Olapade Mufutau, Fernando Pereira Guiomar, Ifiok Otung, Jonathan Rodriguez, Paulo Pereira Monteiro, Ant_onio Lu__s Teixeira; 11.1 Introduction 224; 11.1.1 Environmental effects 225; 11.1.2 Economic benefits 225; 11.2 Standardized Energy Efficiency Metric (Green metric) 228; 11.2.1 Power per subscriber, </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - tra_c and distance/area 229; 11.2.2 Energy consumption rating (ECR) measured in Watt/Gbps 229; 11.2.3 Telecommunications energy efficiency ratio (TEER) 230; 11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) 230; 11.3 Green Design for Energy Crunch Prevention in 5G networks 230; 11.3.1 Hardware solutions 231; 11.3.2 Network planning and deployment 232; 11.3.3 Resource allocation 233; 11.3.4 Energy harvesting (EH) and transfer 233; 11.4 Fiber-based Energy Efficient Network 235; 11.4.1 Zero Power RAU PoF Network 236; 11.4.2 Battery Powered RRH PoF Network 236; 11.5 System and Power Consumption Model 237; 11.5.1 Remote unit power consumption 239; 11.5.2 Centralized unit power consumption 239; 11.5.3 Fronthaul power consumption 239; 11.5.4 Massive MIMO energy efficiency 240; 11.6 Simulation Results and Discussions 242; 11.7 Conclusion 242; Acknowledgments 243; Bibliography 243; 12 Fog Computing Enhanced Fiber-Wireless Access Networks in the 5G Era 247; Bhaskar Prasad </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Rimal, Martin Maier; 12.1 Background and Motivation 247; 12.1.1 Next-Generation PON and Beyond 247; 12.1.2 FiWi Broadband Access Networks 250; 12.1.3 Role of Fog Computing 251; 12.1.4 Computation Offloading 251; 12.1.5 Key Issues and Contributions 253; 12.2 Fog Computing Enhanced FiWi Networks 255; 12.2.1 Network Architecture 255; 12.2.2 Protocol Description 255; 12.3 Analysis 256; 12.3.1 Survivability Analysis 256; 12.3.2 End-to-End Delay Analysis 258; 12.4 Implementation and Validation 259; 12.4.1 Experimental Testbed 259; 12.4.2 Results 260; 12.5 Conclusions and Outlook 262; 12.5.1 Conclusions 262; 12.5.2 Outlook 262; Bibliography 263; 13 Techno-economic and Business Feasibility Analysis of 5G Transport Networks 267; Forough Yaghoubi, Mozhgan Mahloo, Lena Wosinska, Paolo Monti, Fabricio S. Farias, Joao C. W. A. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Costa, Jiajia Chen; 13.1 Introduction 268; 13.2 Mobile Backhaul Technologies 270; 13.3 Techno-economic Framework 272; 13.3.1 Architecture Module 274; 13.3.2 Topology Module 274; 13.3.3 Market Module 274; 13.3.4 Network Dimensioning Tool 274; 13.3.5 Cost Module 275; 13.3.6 Total Cost of Ownership (TCO) Module 275; 13.3.7 Business Models and Scenarios 277; 13.3.8 Techno-economic Module 278; 13.4 Case Study 278; 13.4.1 Applic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / TECHNOLOGY & ENGINEERING / Telecommunications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical communications - Technological innovations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdalla, Abdelgader M.</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)1199066796</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodriguez, Jonathan</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elfergani, Issa</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teixeira, Antonio</subfield><subfield code="4">edt</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031640622</subfield></datafield></record></collection> |
id | DE-604.BV046262646 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:39:54Z |
institution | BVB |
isbn | 9781119491583 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031640622 |
oclc_num | 1135389285 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xli, 308 pages illustrations 250 grams |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Wiley IEEE Press |
record_format | marc |
spelling | Optical and Wireless Convergence for 5G Networks edited by Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira Hoboken, NJ Wiley 2020 IEEE Press xli, 308 pages illustrations 250 grams txt rdacontent n rdamedia nc rdacarrier About the Editors ii; Contributors v; Preface xxvii; Acknowledgments i; Introduction iii; 1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1; Isiaka Ajewale Alimi, Nelson Jesus Muga, Abdelgader M. - Abdalla, Catia Pinho, Jonathan Rodriguez, Paulo Pereira Monteiro, - Antonio Lucios Teixeira; 1.1 Introduction 2; 1.2 Cellular Network Interface and Solution 3; 1.2.1 MBH/MFH Architecture 3; 1.2.2 Integrated MBH/MFH Transport Network 5; 1.3 5G Enabling Technologies 5; 1.3.1 Ultra-Densication 6; 1.3.2 C-RAN and RAN Virtualization 6; 1.3.3 Advanced radio coordination 8; 1.3.4 Millimeter-Wave Small Cells 9; 1.3.5 Massive MIMO 10; 1.3.6 New Multicarrier Modulations for 5G 10; 1.4 Fiber-Wireless Network Convergence 11; 1.5 Radio-over-Fiber Transmission Scheme 12; 1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12; 1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13; 1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14; 1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14; 1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15; 1.7 Wireless based MFH/MBH 18; 1.7.1 FSO Communication Systems 18; 1.7.2 Hybrid RF/FSO Technology 21; 1.7.3 Relay-Assisted FSO Transmission 22; 1.8 Experimental Channel measurement and characterization 23; - 1.9 Results and Discussions 24; 1.10 Conclusion 24; Acknowledgments 24; Bibliography 25; 2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31; Rattana Chuenchom, Andreas Ste_an, Robert G. Walker, Stephen J. - Clements, Yigal Leiba, Andrzej Banach, Mateusz Lech, Andreas Stohr; 2.1 Passive Optical Network 32; 2.1.1 GPON and EPON standard 33; 2.2 Transparent Wireless Extension of Optical Links 34; 2.2.1 Transparent wireless extension of optical links using CRoF 34; 2.3 Key Enabling Photonic and Electronic Technologies 36; 2.3.1 Coherent Photonic Mixer 36; 2.3.2 Single side band Mach-Zehnder modulator 38; 2.3.3 High power amplifier in E-band for GPON extension 40; 2.3.4 Integrated radio access units 42; 2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43; 2.4.1 RX Throughput and packet loss 48; 2.4.2 Latency 48; 2.4.3 Jitter 49; 2.5 Conclusions 49; Bibliography 50; 3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53; Marco Rumi , - Frank Slyne; 3.1 Introduction 53; 3.2 The 5G requirements driving network convergence and virtualisation 54; 3.3 Access and metro convergence 57; 3.3.1 Long-Reach Passive Optical Network 58; 3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59; 3.4 Functional convergence and virtualisation of the central offices 62; 3.4.1 Infrastructure 63; 3.4.2 Management and Control 66; 3.4.3 Cross-Layer Components 70; 3.5 Conclusions 70; Bibliography 70; 4 Multicore Fibres for 5G Fronthaul Evolution 77; Ivana Gasulla, - Jose Capmany; 4.1 Why 5G communications demand for optical Space-Division Multiplexing 77; 4.2 Multicore Fibre Transmission Review 79; 4.2.1 Homogeneous MCFs 80; 4.2.2 Heterogeneous MCFs 81; 4.3 Radio Access Networks using Multicore Fibre Links 82; 4.3.1 Basic MCF link between Central O_ce and Base Station 84; 4.3.2 MCF-based Radio over Fibre C-RAN 85; 4.3.3 MCF-based Digital Radio over Fibre C-RAN 87; 4.4 Microwave signal processing enabled by multicore fibres 88; 4.4.1 Signal Processing over a Heterogeneous MCF link 90; 4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92; 4.5 Final Remarks 94; Bibliography 95; 5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99; Isiaka Ajewale Alimi, Abdelgader M. - Abdalla, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Lu__s Teixeira, Stanislav Zv_anovec, Zabih Ghassemlooy; 5.1 Introduction 100; 5.2 Optical Wireless Systems 102; 5.3 Visible Light Communication (VLC) System Fundamentals 104; 5.4 VLC Current and Anticipated Future Applications 107; 5.4.1 Underwater Wireless Communications 109; 5.4.2 Airlines and Aviation 109; 5.4.3 Hospitals 110; 5.4.4 Vehicular Communication Systems 110; 5.4.5 Sensitive Areas 111; 5.4.6 Manufacturing and Industrial Applications 111; 5.4.7 Retail Stores 112; 5.4.8 Consumer Electronics 112; 5.4.9 Internet of Things 112; 5.4.10 Other Application Areas 113; 5.5 Hybrid VLC and RF Networks 113; 5.6 Challenges and Open-Ended Issues 114; 5.6.1 Flicker and Dimming 115; 5.6.2 Data Rate Improvement 115; 5.7 Conclusions 116; Acknowledgments 116; Bibliography 117; 6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123; Hassan Hamdoun, Mohamed Hamid, Shoaib Amin, - Hind Dafallah; 6.1 Introduction 123; 6.2 5G NR-enabled Use Cases 124; 6.2.1 eMBB and uRLLC 125; 6.2.2 Migration to 5G 126; 6.3 5G RAN Radio-enabling Technologies 126; 6.3.1 Massive MIMO (M-MIMO) 127; 6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130; 6.3.3 Dual Connectivity 131; 6.3.4 Device-to-Device (D2D) communication 132; 6.4 Hardware Impairments 132; 6.4.1 Hardware Impairments-Transmitters 133; 6.4.2 Hardware Impairments - Receivers 135; 6.4.3 Hardware Impairments - Transceivers 135; 6.5 Technology and Fabrication challenges 136; 6.6 Conclusion 137; Bibliography 137; 7 Millimeter Wave Antenna Design for 5G Applications 143; Issa Elfergani, Abubakar Sadiq Hussaini, Abdelgader Abdalla, Jonathan Rodriguez, - Raed Abd-Alhameed; 7.1 Introduction 144; 7.2 Antenna Design and Procedure 146; 7.3 Antenna Optimisation and Analysis 147; 7.3.1 The inuence of ground plane length (GL) 148; 7.3.2 The effect of feeding strip position (Fp) 148; 7.3.3 The inuences of the substrate type 149; 7.4 MMwave Antenna Design with notched frequency band 150; 7.5 MMwave Antenna Design with Loaded Capacitor 153; 7.6 Conclusion 156; Acknowledgement 156; Bibliography 156; 8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161; Pham Tien Dat, Atsushi Kanno, Naokatsu Yamamoto, Testuya Kawanishi; 8.1 Introduction 161; 8.2 Principle of signal encapsulation 163; 8.2.1 Downlink system 163; 8.2.2 Uplink system 165; 8.3 Examples of signal encapsulation 166; 8.3.1 Downlink transmission 166; 8.3.2 Uplink transmission 170; 8.3.3 MmWave link distance 173; 8.3.4 Conclusion 175; Bibliography 176; 9 5G Optical Sensing Technologies 179; Seedahmed S. - Mahmoud , Bernhard Koziol, Jusak Jusak; 9.1 Introduction 179; 9.2 Optical Fibre Communication Network: Intrusion Methods 182; 9.3 Physical Protection of Optical Fibre Communication Cables 183; 9.3.1 Location-Based Optical Fibre Sensors 185; 9.3.2 Point-Based Optical Fibre Sensors 187; 9.3.3 Zone-Based Optical Fibre Sensors 189; 9.4 Design Consideration and Performance Characteristics 190; 9.4.1 Performance Parameters 190; 9.4.2 The Needs for Robust Signal Processing Methods 191; 9.4.3 System Installation and Technology Suitability 192; 9.5 Conclusions 193; Bibliography 193; 10 The Tactile Internet over 5G FiWi Architectures 197; Amin Ebrahimzadeh, Mahfuzulhoq Chowdhury, - Martin Maier; 10.1 Introduction 197; 10.2 The Tactile Internet: State of the Art and Open Challenges 203; 10.3 Related Work 206; 10.4 HITL-Centric Teleoperation over AI Enhanced FiWi Networks 207; 10.5 HART-Centric Task Allocation over Multi-Robot FiWi based Tactile Internet Infrastructures 212; 10.6 Conclusions 217; Bibliography 218; 11 Energy Efficiency in Cloud Radio Access Network (C-RAN) for 5G Mobile Networks:; Opportunities and Challenges 223; Isiaka Ajewale Alimi, Abdelgader M. - Abdalla, Akeem Olapade Mufutau, Fernando Pereira Guiomar, Ifiok Otung, Jonathan Rodriguez, Paulo Pereira Monteiro, Ant_onio Lu__s Teixeira; 11.1 Introduction 224; 11.1.1 Environmental effects 225; 11.1.2 Economic benefits 225; 11.2 Standardized Energy Efficiency Metric (Green metric) 228; 11.2.1 Power per subscriber, - tra_c and distance/area 229; 11.2.2 Energy consumption rating (ECR) measured in Watt/Gbps 229; 11.2.3 Telecommunications energy efficiency ratio (TEER) 230; 11.2.4 Telecommunication Equipment Energy Efficiency Rating (TEEER) 230; 11.3 Green Design for Energy Crunch Prevention in 5G networks 230; 11.3.1 Hardware solutions 231; 11.3.2 Network planning and deployment 232; 11.3.3 Resource allocation 233; 11.3.4 Energy harvesting (EH) and transfer 233; 11.4 Fiber-based Energy Efficient Network 235; 11.4.1 Zero Power RAU PoF Network 236; 11.4.2 Battery Powered RRH PoF Network 236; 11.5 System and Power Consumption Model 237; 11.5.1 Remote unit power consumption 239; 11.5.2 Centralized unit power consumption 239; 11.5.3 Fronthaul power consumption 239; 11.5.4 Massive MIMO energy efficiency 240; 11.6 Simulation Results and Discussions 242; 11.7 Conclusion 242; Acknowledgments 243; Bibliography 243; 12 Fog Computing Enhanced Fiber-Wireless Access Networks in the 5G Era 247; Bhaskar Prasad - Rimal, Martin Maier; 12.1 Background and Motivation 247; 12.1.1 Next-Generation PON and Beyond 247; 12.1.2 FiWi Broadband Access Networks 250; 12.1.3 Role of Fog Computing 251; 12.1.4 Computation Offloading 251; 12.1.5 Key Issues and Contributions 253; 12.2 Fog Computing Enhanced FiWi Networks 255; 12.2.1 Network Architecture 255; 12.2.2 Protocol Description 255; 12.3 Analysis 256; 12.3.1 Survivability Analysis 256; 12.3.2 End-to-End Delay Analysis 258; 12.4 Implementation and Validation 259; 12.4.1 Experimental Testbed 259; 12.4.2 Results 260; 12.5 Conclusions and Outlook 262; 12.5.1 Conclusions 262; 12.5.2 Outlook 262; Bibliography 263; 13 Techno-economic and Business Feasibility Analysis of 5G Transport Networks 267; Forough Yaghoubi, Mozhgan Mahloo, Lena Wosinska, Paolo Monti, Fabricio S. Farias, Joao C. W. A. - Costa, Jiajia Chen; 13.1 Introduction 268; 13.2 Mobile Backhaul Technologies 270; 13.3 Techno-economic Framework 272; 13.3.1 Architecture Module 274; 13.3.2 Topology Module 274; 13.3.3 Market Module 274; 13.3.4 Network Dimensioning Tool 274; 13.3.5 Cost Module 275; 13.3.6 Total Cost of Ownership (TCO) Module 275; 13.3.7 Business Models and Scenarios 277; 13.3.8 Techno-economic Module 278; 13.4 Case Study 278; 13.4.1 Applic bisacsh / TECHNOLOGY & ENGINEERING / Telecommunications Mobile communication systems Optical communications - Technological innovations Abdalla, Abdelgader M. 1970- (DE-588)1199066796 edt Rodriguez, Jonathan edt Elfergani, Issa edt Teixeira, Antonio edt |
spellingShingle | Optical and Wireless Convergence for 5G Networks bisacsh / TECHNOLOGY & ENGINEERING / Telecommunications Mobile communication systems Optical communications - Technological innovations |
title | Optical and Wireless Convergence for 5G Networks |
title_auth | Optical and Wireless Convergence for 5G Networks |
title_exact_search | Optical and Wireless Convergence for 5G Networks |
title_full | Optical and Wireless Convergence for 5G Networks edited by Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira |
title_fullStr | Optical and Wireless Convergence for 5G Networks edited by Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira |
title_full_unstemmed | Optical and Wireless Convergence for 5G Networks edited by Abdelgader M. Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira |
title_short | Optical and Wireless Convergence for 5G Networks |
title_sort | optical and wireless convergence for 5g networks |
topic | bisacsh / TECHNOLOGY & ENGINEERING / Telecommunications Mobile communication systems Optical communications - Technological innovations |
topic_facet | bisacsh / TECHNOLOGY & ENGINEERING / Telecommunications Mobile communication systems Optical communications - Technological innovations |
work_keys_str_mv | AT abdallaabdelgaderm opticalandwirelessconvergencefor5gnetworks AT rodriguezjonathan opticalandwirelessconvergencefor5gnetworks AT elferganiissa opticalandwirelessconvergencefor5gnetworks AT teixeiraantonio opticalandwirelessconvergencefor5gnetworks |