Mathematical Methods in Physics, Engineering, and Chemistry:
Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Borden, Brett 1954- (VerfasserIn), Luscombe, James 1954- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Hoboken, NJ Wiley 2020
Schlagworte:
Beschreibung:Preface xi; 1 Vectors and linear operators 1; 1.1 The linearity of physical phenomena 1; 1.2 Vector spaces 2; 1.2.1 A word on notation 4; 1.2.2 Linear independence, bases,
- and dimensionality 5; 1.2.3 Subspaces 7; 1.2.4 Isomorphism of N-dimensional spaces 8; 1.2.5 Dual spaces 8; 1.3 Inner products and orthogonality 10; 1.3.1 Inner products 10; 1.3.2 The Schwarz inequality 11; 1.3.3 Vector norms 12; 1.3.4 Orthonormal bases and the Gram-Schmidt process 12; 1.3.5 Complete sets of orthonormal vectors 15; 1.4 Operators and matrices 16; 1.4.1 Linear operators 17; 1.4.2 Representing operators with matrices 18; 1.4.3 Matrix algebra 20; 1.4.4 Rank and nullity 22; 1.4.5 Bounded operators 23; 1.4.6 Inverses 24; 1.4.7 Change of basis and the similarity transformation 25; 1.4.8 Adjoints and Hermitian operators 27; 1.4.9 Determinants and the matrix inverse 29; 1.4.10 Unitary operators 33; 1.4.11 The trace of a matrix 35; 1.5 Eigenvectors and their role in representing operators 36; 1.5.1 Eigenvectors and eigenvalues 36; 1.5.2 The eigenproblem for Hermitian and unitary operators 39; 1.5.3 Diagonalizing matrices 40; 1.6 Hilbert space: Infinite-dimensional vector space
- 43; Exercises 47; 2 Sturm-Liouville theory 51; 2.1 Second-order differential equations 52; 2.1.1 Uniqueness and linear independence 52; 2.1.2 The adjoint operator 55; 2.1.3 Self-adjoint operator 56; 2.2 Sturm-Liouville systems 57; 2.3 The Sturm-Liouville eigenproblem 60; 2.4 The Dirac delta function 64; 2.5 Completeness 66; 2.6 Recap 68; Summary 68; Exercises 69; 3 Partial differential equations 71; 3.1 A survey of partial differential equations 71; 3.1.1 The continuity equation 71; 3.1.2 The diffusion equation 72; 3.1.3 The free-particle Schroedinger equation 73; 3.1.4 The heat equation 73; 3.1.5 The inhomogeneous diffusion equation 74; 3.1.6 Schroedinger equation for a particle in a potential field 74; 3.1.7 The Poisson equation 74; 3.1.8 The Laplace equation 75; 3.1.9 The wave equation 75; 3.1.10 Inhomogeneous wave equation 76; 3.1.11 Summary of PDEs 76; 3.2 Separation of variables and the Helmholtz equation 76; 3.2.1 Rectangular coordinates 78; 3.2.2 Cylindrical coordinates 80;
- 3.2.3 Spherical coordinates 82; 3.3 The paraxial approximation 83; 3.4 The three types of linear PDEs 84; 3.4.1 Hyperbolic PDEs 85; 3.4.2 Parabolic PDEs 87; 3.4.3 Elliptic PDEs 87; 3.5 Outlook 88; Summary 88; Exercises 89; 4 Fourier analysis 91; 4.1 Fourier series 91; 4.2 The exponential form of Fourier series 96; 4.3 General intervals 98; 4.4 Parseval's theorem 103; 4.5 Back to the delta function 105; 4.6 Fourier transform 107; 4.7 Convolution integral 111; Summary 115; Exercises 116; 5 Series solutions of ordinary differential equations 121; 5.1 The Frobenius method 122; 5.1.1 Power series 122; 5.1.2 Introductory example 123; 5.1.3 Ordinary points 125; 5.1.4 Regular singular points 130; 5.2 Wronskian method for obtaining a second solution 137; 5.3 Bessel and Neumann functions 137; 5.4 Legendre polynomials 142; Summary 144; Exercises 145; 6 Spherical harmonics 147; 6.1 Properties of the Legendre polynomials,
- Pl(x) 148; 6.1.1 Rodrigues formula 148; 6.1.2 Orthogonality 150; 6.1.3 Completeness 151; 6.1.4 Generating function 152; 6.1.5 Recursion relations 155; 6.2 Associated Legendre functions, Pm l (x) 157; 6.3 Spherical harmonic functions, Yml ( , ) 158; 6.4 Addition theorem for Ym l ( , ) 160; 6.5 Laplace equation in spherical coordinates 166; Summary 167; Exercises 168; 7 Bessel functions 173; 7.1 Small-argument and asymptotic forms 173; 7.1.1 Limiting forms for small argument 173; 7.1.2 Asymptotic forms for large argument 174; 7.1.3 Hankel functions 174; 7.2 Properties of the Bessel functions,
- Jn(x) 175; 7.2.1 Series associated with the generating function 175; 7.2.2 Recursion relations 177; 7.2.3 Integral representation 178; 7.3 Orthogonality 180; 7.4 Bessel series 182; 7.5 The Fourier-Bessel transform 185; 7.6 Spherical Bessel functions 186; 7.6.1 Reduction to elementary functions 186; 7.6.2 Small-argument forms 188; 7.6.3 Asymptotic forms 188; 7.6.4 Orthogonality and completeness 189; 7.7 Expansion of plane waves in spherical harmonics 190; Summary 192; Exercises 192; 8 Complex analysis 195; 8.1 Complex functions 195; 8.2 Analytic functions: differentiable in a region 197; 8.2.1 Continuity, differentiability,
- and analyticity 197; 8.2.2 Cauchy-Riemann conditions 198; 8.2.3 Analytic functions are functions only of z = x + iy 201; 8.2.4 Useful definitions 201; 8.3 Contour integrals 202; 8.4 Integrating analytic functions 206; 8.5 Cauchy integral formulas 210; 8.5.1 Derivatives of analytic functions 211; 8.5.2 Consequences of the Cauchy formulas 212; 8.6 Taylor and Laurent series 213; 8.6.1 Taylor series 213; 8.6.2 The zeros of analytic functions are isolated 215; 8.6.3 Laurent series 215; 8.7 Singularities and residues 217; 8.7.1 Isolated singularities, residue theorem 217; 8.7.2 Multivalued functions, branch points,
- and branch cuts 220; 8.8 Definite integrals 221; 8.8.1 Integrands containing cos and sin 222; 8.8.2 Infinite integrals 223; 8.8.3 Poles on the contour of integration 226; 8.9 Meromorphic functions 228; 8.10 Approximation of integrals 230; 8.10.1 The method of steepest descent 233; 8.10.2 The method of stationary phase 235; 8.11 The analytic signal 236; 8.11.1 The Hilbert transform 237; 8.11.2 Paley-Wiener and Titchmarsh theorems 239; 8.11.3 Is the analytic signal, analytic? 241; 8.12 The Laplace transform 242; Summary 245; Exercises 245; 9 Inhomogeneous differential equations 251; 9.1 The method of Green functions 251; 9.1.1 Boundary conditions 252; 9.1.2 Reciprocity relation: G(x, x') = G(x', x) 253; 9.1.3 Matching conditions 254; 9.1.4 Direct construction of G(x, x') 255; 9.1.5 Eigenfunction expansions 257; 9.2 Poisson equation 260; 9.2.1 Boundary conditions and reciprocity relations 261; 9.2.2 So,
- what's the Green function? 263; 9.3 Helmholtz equation 266; 9.3.1 Green function for two-dimensional problems 267; 9.3.2 Free-space Green function for three dimensions 270; 9.3.3 Expansion in spherical harmonics 270; 9.4 Diffusion equation 272; 9.4.1 Boundary conditions, causality,
- and reciprocity 272; 9.4.2 Solution to the diffusion equation 274; 9.4.3 Free-space Green function 275; 9.5 Wave equation 279; 9.6 The Kirchhoff integral theorem 283; Summary 284; Exercises 284; 10 Integral equations 287; 10.1 Introduction 287; 10.1.1 Equivalence of integral and differential equations 287; 10.1.2 Role of coordinate systems in capturing boundary data 288; 10.2 Classification of integral equations 290; 10.3 Neumann series 291; 10.4 Integral transform methods 293; 10.4.1 Difference kernels 293; 10.4.2 Fourier kernels 294; 10.5 Separable kernels 295; 10.6 Self-adjoint kernels 297; 10.7 Numerical approaches 302; 10.7.1 Matrix form 302; 10.7.2 Measurement space 303; 10.7.3 The generalized inverse 306; Summary 314; Exercises 315; 11 Tensor analysis 319; 11.1 Once over lightly: A quick intro to tensors 319; 11.2 Transformation properties 327; 11.2.1 The two types of vector: Contravariant and covariant 327; 11.2.2 Coordinate transformations 328; 11.2.3 Contravariant vectors
- and tensors 332; 11.2.4 Covariant vectors and tensors 336; 11.2.5 Mixed tensors 339; 11.2.6 Covariant equations 339; 11.3 Contraction and the quotient theorem 340; 11.4 The metric tensor 342; 11.5 Raising and lowering indices 344; 11.6 Geometric properties of covariant vectors 347; 11.7 Relative tensors 350; 11.8 Tensors as operators 353; 11.9 Symmetric and antisymmetric tensors 356; 11.10 The Levi-Civita tensor 357; 11.11 Pseudotensors 360; 11.12 Covariant differentiation of tensors 363; Summary 373; Exercises 374; A Vector calculus 377; A.1 Scalar fields 377; A.1.1 The directional derivative 377; A.1.2 The gradient 378; A.2 Vector fields 379; A.2.1 Divergence 379; A.2.2 Curl 380; A.2.3 The Laplacian 380; A.2.4 Vector operator formulae 381; A.3 Integration 382; A.3.1 Line integrals 382; A.3.2 Surface integrals 383; A.4 Important integral theorems in vector calculus 384; A.4.1 Green's theorem in the plane 384; A.4.2 The divergence theorem 386; A.4.3 Stokes' theorem 386; A.4.4
- Conservative fields 387; A.4.5 The Helmholtz theorem 389; A.5 Coordinate systems 390; A.5.1 Orthogonal curvilinear coordinates 390; A.5.2 Unit vectors 391; A.5.3 Differential displacement 392; A.5.4 Differential surface and volume elements 393; A.5.5 Transformation of vector components 393; A.5.6 Cylindrical coordinates 394; B Power series 401; C The gamma function, (x) 403; Recursion relation 403; Limit formula 404; Reflection formula 405; Digamma function 405; D Boundary conditions for Partial Differential Equations 409; Summary 417; References 419; Index 421
Beschreibung:xiii, 428 pages illustrations 259 grams
ISBN:9781119579656

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!