Electrical load forecasting using adaptive neuro-fuzzy inference system:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Clausthal-Zellerfeld
Papierflieger Verlag GmbH
May 2019
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XVI, 146 Seiten Illustrationen 21 cm, 280 g |
ISBN: | 9783869486987 3869486988 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046231860 | ||
003 | DE-604 | ||
005 | 20200108 | ||
007 | t | ||
008 | 191105s2019 gw a||| m||| 00||| eng d | ||
015 | |a 19,N31 |2 dnb | ||
015 | |a 19,A44 |2 dnb | ||
015 | |a 19,H11 |2 dnb | ||
016 | 7 | |a 1191277844 |2 DE-101 | |
020 | |a 9783869486987 |c Broschur : EUR 32.40 (DE), EUR 33.40 (AT) |9 978-3-86948-698-7 | ||
020 | |a 3869486988 |9 3-86948-698-8 | ||
024 | 3 | |a 9783869486987 | |
035 | |a (OCoLC)1136274905 | ||
035 | |a (DE-599)DNB1191277844 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NI | ||
049 | |a DE-83 | ||
082 | 0 | |a 621.31920285632 |2 23/ger | |
084 | |a ZN 8520 |0 (DE-625)157630: |2 rvk | ||
084 | |a ZN 8510 |0 (DE-625)157629: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
084 | |a 621.3 |2 sdnb | ||
100 | 1 | |a Hashemifarzad, Ali |d 1985- |e Verfasser |0 (DE-588)1190187477 |4 aut | |
245 | 1 | 0 | |a Electrical load forecasting using adaptive neuro-fuzzy inference system |c Ali Hashemifarzad, M. Sc. |
264 | 1 | |a Clausthal-Zellerfeld |b Papierflieger Verlag GmbH |c May 2019 | |
300 | |a XVI, 146 Seiten |b Illustrationen |c 21 cm, 280 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Clausthal |d 2019 | ||
650 | 0 | 7 | |a Netzbelastung |0 (DE-588)4194619-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Adaptives System |0 (DE-588)4247928-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuro-Fuzzy-System |0 (DE-588)4560677-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inferenzsystem |0 (DE-588)4288863-3 |2 gnd |9 rswk-swf |
653 | |a Paperback / softback | ||
653 | |a Fachhochschul-/Hochschulausbildung | ||
653 | |a Fachpublikum/ Wissenschaft | ||
653 | |a ANFIS | ||
653 | |a Adaptive Neuro-Fuzzy-Infernzsystem | ||
653 | |a elektrische Energie | ||
653 | |a 1683: Hardcover, Softcover / Technik/Wärmetechnik, Energietechnik, Kraftwerktechnik | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Netzbelastung |0 (DE-588)4194619-4 |D s |
689 | 0 | 1 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 0 | 2 | |a Neuro-Fuzzy-System |0 (DE-588)4560677-8 |D s |
689 | 0 | 3 | |a Inferenzsystem |0 (DE-588)4288863-3 |D s |
689 | 0 | 4 | |a Adaptives System |0 (DE-588)4247928-9 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Papierflieger Verlag |0 (DE-588)1064204619 |4 pbl | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1191277844/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031610338&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031610338 |
Datensatz im Suchindex
_version_ | 1804180643431579648 |
---|---|
adam_text | CONTENTS
ACKNOWLEDGMENTS
.................................................................................................IV
ABSTRACT
...................................................................................................................
V
KURZFASSUNG
........................................................................................................
VII
LIST
OF
FIGURES
.....................................................................................................
XII
LIST
OF
TABLES
.......................................................................................................
XV
ABBREVIATION
......................................................................................................XVI
I.
CHAPTER
1
........................................................................................................
1
1.
INTRODUCTION
........................................................................................................................................
1
2.
MOTIVATION
.........................................................................................................................................
3
3.
GENERAL
PHILOSOPHY
OF
PREDICTION
....................................................................................................
6
4.
THE
RESEARCH
STRUCTURE
...................................................................................................................
13
II.
CHAPTER
2
.............................................................................
.
.......................
15
1.
CONCEPT
DRIFT
....................................................................................................................................
16
2.
CHAOS
...............................................................................................................................................
18
2.1.
CHAOS
PHENOMENA
IN
TIME
SERIES
.........................................................................................
19
3.
PROVING
THE
EXISTENCE
OF
CHAOS
IN
SAMPLE
DATA
..........................................................................
25
3.1.
EMBEDDING
DIMENSION
..........................................................................................................
25
3.2.
GRASSBERGER-PROCACCIA
CORRELATION
DIMENSION
....................................................................
29
3.3.
LYAPUNOV
EXPONENT
................................................................................................................
31
4.
PROPOSED
ALGORITHM
.......................................................................................................................
33
III.
CHAPTER
3
.....................................................................................................
36
1.
LOAD
PREDICTION
IN
TODAY
*
S
ENERGY
SYSTEMS
..................................................................................
36
2.
LOAD
PREDICTION
METHODS
..............................................................................................................
38
2.1.
CLASSIC
METHODS
......................................................................................................................
39
2.1.1.
REGRESSION
ALGORITHMS
......................................................................................................
39
2.1.2.
CLASSIC
TIME
SERIES
ANALYSIS
.............................................................................................
39
2.1.3.
EXPONENTIAL
SMOOTHING
.....................................................................................................
40
2.1.4.
ADAPTIVE
FILTERING
................................................................................................................
40
2.1.5.
SIMILAR
DAY
LOOKUP
..........................................................................................................
41
2.2.
MODEM
APPROACHES
................................................................................................................
41
2.2.1.
FUZZY
LOGIC
.........................................................................................................................
41
2.2.2.
SUPPORT
VECTOR
MACHINES
(SVM)
......................................................................................
42
2.2.3.
ARTIFICIAL
NEURAL
NETWORKS
(ANN)
....................................................................................
42
2.2.4.
GENETIC
ALGORITHM
(GA)
.....................................................................................................
43
3.
NEURAL
NETWORKS
..............................................................................................................................
44
3.1.
INTRODUCTION
.............................................................................................................................
44
3.2.
ARTIFICIAL
NEURAL
NETWORKS
(ANNS)
......................................................................................
45
3.3.
NEURAL
NETWORKS
STRUCTURE
......................................................................................................
48
3.4.
ANNS
*
TRAINING
PROCESS
.........................................................................................................
52
3.4.1.
BACKPROPAGATION
ALGORITHM
...............................................................................................
53
3.4.2.
PERCEPTRON
MODEL
...............................................................................................................
55
4.
RESULTS
OF
LOAD
PREDICTIONS
BASED
ON
ANNS
................................................................................
57
4.1.
WEEKLY
PREDICTION
RESULTS:
.....................................................................................................
60
4.2.
MONTHLY
PREDICTION
RESULTS:
..................................................................................................
62
4.3.
SEASONAL
PREDICTION
RESULTS:
..................................................................................................
64
5.
NEURAL
NETWORKS
DRAWBACKS
..........................................................................................................
66
IV.
CHAPTER
4
......................................................................................................
67
1.
ADAPTIVE
NEURO-FUZZY
INFERENCE
SYSTEM
(ANFIS)
......................................................................
67
1.1.
ANFIS
STRUCTURE
.....................................................................................................................
68
1.2.
ANFIS
TRAINING
METHODS
.......................................................................................................
71
1.3.
LEAST
SQUARE
ERROR
METHOD
....................................................................................................
71
1.4.
GRADIENT
DESCENT
METHOD
.......................................................................................................
73
1.5.
HYBRID
METHOD
........................................................................................................................
76
2.
RESULTS
OF
LOAD
PREDICTIONS
BASED
ON
ANFIS
...............................................................................
76
2.1.
WEEKLY
PREDICTION
RESULTS:
....................................................................................................
77
2.2.
MONTHLY
PREDICTION
RESULTS:
...................................................................................................
80
2.3.
SEASONAL
PREDICTION
RESULTS:
...................................................................................................
83
3.
COMPARISON
BETWEEN
ANN
AND
ANFIS
........................................................................................
86
V.
CHAPTER
5
......................................................................................................
88
1.
THE
AIM
OF
ENERGY
SYSTEM
MODELLING
..........................................................................................
88
2.
SIMULATION
MODEL
OF
A
DECENTRALIZED
ENERGY
SYSTEM
..................................................................
90
3.
CASE
STUDY
OF
ENERGY
PARK
IN
CUTEC
..........................................................................................
91
3.1.
INTRODUCTION
OF
ENERGY
PARK
CUTEC
....................................................................................
91
3.2.
MATLAB
AND
MATLAB-SIMULINK
.........................
93
3.3.
MODEL
.......................................................................................................................................
96
3.4.
SAMPLE
RESULTS
......................................................................................................................
102
3.4.1.
OVERALL
RESULTS
-
YEAR
2014
.............................................................................................
103
3.4.2.
SAMPLE
COLD
WEEK
/
DAY
................................................................................................
107
3.4.3.
SAMPLE
HOT
WEEK
/
DAY
.................................................................................................
111
3.5.
MODEL
VERIFICATION
.....................................................................................................................
115
VI.
CHAPTER
6
...................................................................................................
117
1.
ENERGY
SYSTEM
STRUCTURE
IN
IRAN
.......................................................................................................
117
2.1.
CURRENT
SITUATION
..................................................................................................................
117
2.1.1.
OIL
......................................................................................................................................
118
2.1.2.
NATURAL
GAS
.......................................................................................................................
118
2.1.3.
COAL
...................................................................................................................................
118
2.1.4.
RENEWABLES
.......................................................................................................................
119
2.1.5.
ELECTRICITY
.........................................................................................................................
120
2.2.
FUTURE
DEVELOPMENT
PLANS
..........................................................................
122
2.3.
TRANSFERABILITY
OF
PROPOSED
MODEL
TO
IRAN
*
S
SYSTEM
.........................................................
123
VII.
CHAPTER
7
...................................................................................................
125
1.
CONCLUSION,
FINAL
REMARKS
..........................................................................................................
125
2.
FUTURE
WORKS
.................................................................................................................................
126
VIII.
REFERENCES
..................................................................................................
128
IX.
APPENDICES
.................................................................................................
134
A.
IMPLEMENTATION
CODES
FOR
LOAD
PREDICTION
................................................................................
134
A.
L.
MUTUAL
INFORMATION
FUNCTION
..................................................................................................
134
A.2.
METHOD
OF
CAO
..........................................................................................................................
135
A.3.
CORRELATION
DIMENSION
.............................................................................................................
136
A.
4.
LYAPUNOV
EXPONENTS
................................................................................................................
139
B.
IMPLEMENTATION
CODES
AND
SIMULINK
MODEL
FOR
ENERGY
PARK
CUTEC
....................................
141
B.
1.
SIMULINK
MODEL
OF
ENERGY
PARK
..............................................................................................
141
C.
SIMULATION
RESULTS
OF
THE
ENERGY
SYSTEM
MODEL
FOR
ENERGY
PARK
CUTEC
IN
YEAR
2014
.......
142
C.
L.
ELECTRICITY
PRODUCTION
OVER
THE
YEAR
.....................................................................................
142
C.2.
HEAT
PRODUCTION
OVER
THE
YEAR
...............................................................................................
143
D.
SELECTED
LIST
OF
PRESENTATIONS
AND
PUBLICATIONS
.........................................................................
144
E.
CURRICULUM
VITAE
.........................................................................................................................
145
|
any_adam_object | 1 |
author | Hashemifarzad, Ali 1985- |
author_GND | (DE-588)1190187477 |
author_facet | Hashemifarzad, Ali 1985- |
author_role | aut |
author_sort | Hashemifarzad, Ali 1985- |
author_variant | a h ah |
building | Verbundindex |
bvnumber | BV046231860 |
classification_rvk | ZN 8520 ZN 8510 |
ctrlnum | (OCoLC)1136274905 (DE-599)DNB1191277844 |
dewey-full | 621.31920285632 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.31920285632 |
dewey-search | 621.31920285632 |
dewey-sort | 3621.31920285632 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Mathematik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02798nam a2200685 c 4500</leader><controlfield tag="001">BV046231860</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200108 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">191105s2019 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N31</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,A44</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,H11</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1191277844</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783869486987</subfield><subfield code="c">Broschur : EUR 32.40 (DE), EUR 33.40 (AT)</subfield><subfield code="9">978-3-86948-698-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3869486988</subfield><subfield code="9">3-86948-698-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783869486987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1136274905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1191277844</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NI</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.31920285632</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8520</subfield><subfield code="0">(DE-625)157630:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8510</subfield><subfield code="0">(DE-625)157629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hashemifarzad, Ali</subfield><subfield code="d">1985-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1190187477</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrical load forecasting using adaptive neuro-fuzzy inference system</subfield><subfield code="c">Ali Hashemifarzad, M. Sc.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Clausthal-Zellerfeld</subfield><subfield code="b">Papierflieger Verlag GmbH</subfield><subfield code="c">May 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 146 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">21 cm, 280 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Clausthal</subfield><subfield code="d">2019</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzbelastung</subfield><subfield code="0">(DE-588)4194619-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives System</subfield><subfield code="0">(DE-588)4247928-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuro-Fuzzy-System</subfield><subfield code="0">(DE-588)4560677-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inferenzsystem</subfield><subfield code="0">(DE-588)4288863-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Paperback / softback</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fachhochschul-/Hochschulausbildung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fachpublikum/ Wissenschaft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ANFIS</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Adaptive Neuro-Fuzzy-Infernzsystem</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">elektrische Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">1683: Hardcover, Softcover / Technik/Wärmetechnik, Energietechnik, Kraftwerktechnik</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Netzbelastung</subfield><subfield code="0">(DE-588)4194619-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neuro-Fuzzy-System</subfield><subfield code="0">(DE-588)4560677-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Inferenzsystem</subfield><subfield code="0">(DE-588)4288863-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Adaptives System</subfield><subfield code="0">(DE-588)4247928-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Papierflieger Verlag</subfield><subfield code="0">(DE-588)1064204619</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1191277844/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031610338&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031610338</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV046231860 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:39:01Z |
institution | BVB |
institution_GND | (DE-588)1064204619 |
isbn | 9783869486987 3869486988 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031610338 |
oclc_num | 1136274905 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XVI, 146 Seiten Illustrationen 21 cm, 280 g |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Papierflieger Verlag GmbH |
record_format | marc |
spelling | Hashemifarzad, Ali 1985- Verfasser (DE-588)1190187477 aut Electrical load forecasting using adaptive neuro-fuzzy inference system Ali Hashemifarzad, M. Sc. Clausthal-Zellerfeld Papierflieger Verlag GmbH May 2019 XVI, 146 Seiten Illustrationen 21 cm, 280 g txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität Clausthal 2019 Netzbelastung (DE-588)4194619-4 gnd rswk-swf Prognose (DE-588)4047390-9 gnd rswk-swf Adaptives System (DE-588)4247928-9 gnd rswk-swf Neuro-Fuzzy-System (DE-588)4560677-8 gnd rswk-swf Inferenzsystem (DE-588)4288863-3 gnd rswk-swf Paperback / softback Fachhochschul-/Hochschulausbildung Fachpublikum/ Wissenschaft ANFIS Adaptive Neuro-Fuzzy-Infernzsystem elektrische Energie 1683: Hardcover, Softcover / Technik/Wärmetechnik, Energietechnik, Kraftwerktechnik (DE-588)4113937-9 Hochschulschrift gnd-content Netzbelastung (DE-588)4194619-4 s Prognose (DE-588)4047390-9 s Neuro-Fuzzy-System (DE-588)4560677-8 s Inferenzsystem (DE-588)4288863-3 s Adaptives System (DE-588)4247928-9 s DE-604 Papierflieger Verlag (DE-588)1064204619 pbl B:DE-101 application/pdf https://d-nb.info/1191277844/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031610338&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hashemifarzad, Ali 1985- Electrical load forecasting using adaptive neuro-fuzzy inference system Netzbelastung (DE-588)4194619-4 gnd Prognose (DE-588)4047390-9 gnd Adaptives System (DE-588)4247928-9 gnd Neuro-Fuzzy-System (DE-588)4560677-8 gnd Inferenzsystem (DE-588)4288863-3 gnd |
subject_GND | (DE-588)4194619-4 (DE-588)4047390-9 (DE-588)4247928-9 (DE-588)4560677-8 (DE-588)4288863-3 (DE-588)4113937-9 |
title | Electrical load forecasting using adaptive neuro-fuzzy inference system |
title_auth | Electrical load forecasting using adaptive neuro-fuzzy inference system |
title_exact_search | Electrical load forecasting using adaptive neuro-fuzzy inference system |
title_full | Electrical load forecasting using adaptive neuro-fuzzy inference system Ali Hashemifarzad, M. Sc. |
title_fullStr | Electrical load forecasting using adaptive neuro-fuzzy inference system Ali Hashemifarzad, M. Sc. |
title_full_unstemmed | Electrical load forecasting using adaptive neuro-fuzzy inference system Ali Hashemifarzad, M. Sc. |
title_short | Electrical load forecasting using adaptive neuro-fuzzy inference system |
title_sort | electrical load forecasting using adaptive neuro fuzzy inference system |
topic | Netzbelastung (DE-588)4194619-4 gnd Prognose (DE-588)4047390-9 gnd Adaptives System (DE-588)4247928-9 gnd Neuro-Fuzzy-System (DE-588)4560677-8 gnd Inferenzsystem (DE-588)4288863-3 gnd |
topic_facet | Netzbelastung Prognose Adaptives System Neuro-Fuzzy-System Inferenzsystem Hochschulschrift |
url | https://d-nb.info/1191277844/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031610338&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hashemifarzadali electricalloadforecastingusingadaptiveneurofuzzyinferencesystem AT papierfliegerverlag electricalloadforecastingusingadaptiveneurofuzzyinferencesystem |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis