Big data analytics for sustainable computing:
Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, PA
IGI Global
[2020]
|
Schlagworte: | |
Online-Zugang: | DE-824 DE-1050 DE-83 DE-706 DE-898 Volltext |
Zusammenfassung: | Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative rese |
Beschreibung: | 1 Online-Ressource (XXII, 261 Seiten) |
ISBN: | 9781522597520 |
DOI: | 10.4018/978-1-5225-9750-6 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV046217829 | ||
003 | DE-604 | ||
005 | 20211108 | ||
007 | cr|uuu---uuuuu | ||
008 | 191028s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781522597520 |c Online |9 978-1-5225-9752-0 | ||
035 | |a (OCoLC)1126553733 | ||
035 | |a (DE-599)BVBBV046217829 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-824 |a DE-706 |a DE-83 |a DE-898 | ||
100 | 1 | |a Haldorai, Anandakumar |d 1983- |e Verfasser |0 (DE-588)1187283177 |4 aut | |
245 | 1 | 0 | |a Big data analytics for sustainable computing |c Anandakumar Haldorai, Arulmurugan Ramu |
264 | 1 | |a Hershey, PA |b IGI Global |c [2020] | |
300 | |a 1 Online-Ressource (XXII, 261 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Chapter 1. Understanding big data -- Chapter 2. A detailed study on classification algorithms in big data -- Chapter 3. Big data and analytics -- Chapter 4. Decoding big data analytics for emerging business through data-intensive applications and business intelligence: a review on analytics applications and theoretical aspects -- Chapter 5. Feature selection algorithm using relative odds for data mining classification -- Chapter 6. Social network analysis -- Chapter 7. Role of machine intelligence and big data in remote sensing -- Chapter 8. Provisioning system for application virtualization environments -- Chapter 9. Big data-based spectrum sensing for cognitive radio networks using artificial intelligence -- Chapter 10. Big data analytics in the healthcare industry: an analysis of healthcare applications in machine learning with big data analytics -- Chapter 11. Big data analytics and visualization for food health status determination using bigmart data -- Chapter 12. "Saksham model" performance improvisation using Node capability evaluation in apache hadoop | |
520 | |a Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative rese | ||
650 | 4 | |a Big data | |
700 | 1 | |a Ramu, Arulmurugan |d 1985- |e Verfasser |0 (DE-588)1187283657 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardcover |z 978-1-5225-9750-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, softcover |z 978-1-5225-9751-3 |
856 | 4 | 0 | |u https://doi.org/10.4018/978-1-5225-9750-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-4-NLEBK |a ZDB-98-IGB | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2257549 |l DE-824 |p ZDB-4-NLEBK |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-5225-9750-6 |l DE-1050 |p ZDB-98-IGB |q FHD01_IGB_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-5225-9750-6 |l DE-83 |p ZDB-98-IGB |q TUB_EBS_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-5225-9750-6 |l DE-706 |p ZDB-98-IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-5225-9750-6 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805076698846199808 |
---|---|
adam_text | |
any_adam_object | |
author | Haldorai, Anandakumar 1983- Ramu, Arulmurugan 1985- |
author_GND | (DE-588)1187283177 (DE-588)1187283657 |
author_facet | Haldorai, Anandakumar 1983- Ramu, Arulmurugan 1985- |
author_role | aut aut |
author_sort | Haldorai, Anandakumar 1983- |
author_variant | a h ah a r ar |
building | Verbundindex |
bvnumber | BV046217829 |
collection | ZDB-4-NLEBK ZDB-98-IGB |
contents | Chapter 1. Understanding big data -- Chapter 2. A detailed study on classification algorithms in big data -- Chapter 3. Big data and analytics -- Chapter 4. Decoding big data analytics for emerging business through data-intensive applications and business intelligence: a review on analytics applications and theoretical aspects -- Chapter 5. Feature selection algorithm using relative odds for data mining classification -- Chapter 6. Social network analysis -- Chapter 7. Role of machine intelligence and big data in remote sensing -- Chapter 8. Provisioning system for application virtualization environments -- Chapter 9. Big data-based spectrum sensing for cognitive radio networks using artificial intelligence -- Chapter 10. Big data analytics in the healthcare industry: an analysis of healthcare applications in machine learning with big data analytics -- Chapter 11. Big data analytics and visualization for food health status determination using bigmart data -- Chapter 12. "Saksham model" performance improvisation using Node capability evaluation in apache hadoop |
ctrlnum | (OCoLC)1126553733 (DE-599)BVBBV046217829 |
doi_str_mv | 10.4018/978-1-5225-9750-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV046217829</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211108</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191028s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781522597520</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-5225-9752-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1126553733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046217829</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haldorai, Anandakumar</subfield><subfield code="d">1983-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1187283177</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data analytics for sustainable computing</subfield><subfield code="c">Anandakumar Haldorai, Arulmurugan Ramu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, PA</subfield><subfield code="b">IGI Global</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 261 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 1. Understanding big data -- Chapter 2. A detailed study on classification algorithms in big data -- Chapter 3. Big data and analytics -- Chapter 4. Decoding big data analytics for emerging business through data-intensive applications and business intelligence: a review on analytics applications and theoretical aspects -- Chapter 5. Feature selection algorithm using relative odds for data mining classification -- Chapter 6. Social network analysis -- Chapter 7. Role of machine intelligence and big data in remote sensing -- Chapter 8. Provisioning system for application virtualization environments -- Chapter 9. Big data-based spectrum sensing for cognitive radio networks using artificial intelligence -- Chapter 10. Big data analytics in the healthcare industry: an analysis of healthcare applications in machine learning with big data analytics -- Chapter 11. Big data analytics and visualization for food health status determination using bigmart data -- Chapter 12. "Saksham model" performance improvisation using Node capability evaluation in apache hadoop</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative rese</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramu, Arulmurugan</subfield><subfield code="d">1985-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1187283657</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardcover</subfield><subfield code="z">978-1-5225-9750-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, softcover</subfield><subfield code="z">978-1-5225-9751-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/978-1-5225-9750-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2257549</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-5225-9750-6</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHD01_IGB_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-5225-9750-6</subfield><subfield code="l">DE-83</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUB_EBS_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-5225-9750-6</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-5225-9750-6</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046217829 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:01:26Z |
institution | BVB |
isbn | 9781522597520 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031596565 |
oclc_num | 1126553733 |
open_access_boolean | |
owner | DE-1050 DE-824 DE-706 DE-83 DE-898 DE-BY-UBR |
owner_facet | DE-1050 DE-824 DE-706 DE-83 DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (XXII, 261 Seiten) |
psigel | ZDB-4-NLEBK ZDB-98-IGB ZDB-98-IGB FHD01_IGB_Kauf ZDB-98-IGB TUB_EBS_IGB ZDB-98-IGB FHR_PDA_IGB |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | IGI Global |
record_format | marc |
spelling | Haldorai, Anandakumar 1983- Verfasser (DE-588)1187283177 aut Big data analytics for sustainable computing Anandakumar Haldorai, Arulmurugan Ramu Hershey, PA IGI Global [2020] 1 Online-Ressource (XXII, 261 Seiten) txt rdacontent c rdamedia cr rdacarrier Chapter 1. Understanding big data -- Chapter 2. A detailed study on classification algorithms in big data -- Chapter 3. Big data and analytics -- Chapter 4. Decoding big data analytics for emerging business through data-intensive applications and business intelligence: a review on analytics applications and theoretical aspects -- Chapter 5. Feature selection algorithm using relative odds for data mining classification -- Chapter 6. Social network analysis -- Chapter 7. Role of machine intelligence and big data in remote sensing -- Chapter 8. Provisioning system for application virtualization environments -- Chapter 9. Big data-based spectrum sensing for cognitive radio networks using artificial intelligence -- Chapter 10. Big data analytics in the healthcare industry: an analysis of healthcare applications in machine learning with big data analytics -- Chapter 11. Big data analytics and visualization for food health status determination using bigmart data -- Chapter 12. "Saksham model" performance improvisation using Node capability evaluation in apache hadoop Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative rese Big data Ramu, Arulmurugan 1985- Verfasser (DE-588)1187283657 aut Erscheint auch als Druck-Ausgabe, hardcover 978-1-5225-9750-6 Erscheint auch als Druck-Ausgabe, softcover 978-1-5225-9751-3 https://doi.org/10.4018/978-1-5225-9750-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Haldorai, Anandakumar 1983- Ramu, Arulmurugan 1985- Big data analytics for sustainable computing Chapter 1. Understanding big data -- Chapter 2. A detailed study on classification algorithms in big data -- Chapter 3. Big data and analytics -- Chapter 4. Decoding big data analytics for emerging business through data-intensive applications and business intelligence: a review on analytics applications and theoretical aspects -- Chapter 5. Feature selection algorithm using relative odds for data mining classification -- Chapter 6. Social network analysis -- Chapter 7. Role of machine intelligence and big data in remote sensing -- Chapter 8. Provisioning system for application virtualization environments -- Chapter 9. Big data-based spectrum sensing for cognitive radio networks using artificial intelligence -- Chapter 10. Big data analytics in the healthcare industry: an analysis of healthcare applications in machine learning with big data analytics -- Chapter 11. Big data analytics and visualization for food health status determination using bigmart data -- Chapter 12. "Saksham model" performance improvisation using Node capability evaluation in apache hadoop Big data |
title | Big data analytics for sustainable computing |
title_auth | Big data analytics for sustainable computing |
title_exact_search | Big data analytics for sustainable computing |
title_full | Big data analytics for sustainable computing Anandakumar Haldorai, Arulmurugan Ramu |
title_fullStr | Big data analytics for sustainable computing Anandakumar Haldorai, Arulmurugan Ramu |
title_full_unstemmed | Big data analytics for sustainable computing Anandakumar Haldorai, Arulmurugan Ramu |
title_short | Big data analytics for sustainable computing |
title_sort | big data analytics for sustainable computing |
topic | Big data |
topic_facet | Big data |
url | https://doi.org/10.4018/978-1-5225-9750-6 |
work_keys_str_mv | AT haldoraianandakumar bigdataanalyticsforsustainablecomputing AT ramuarulmurugan bigdataanalyticsforsustainablecomputing |