Euler's Gem: he Polyhedron Formula and the birth of topology
How a simple equation reshaped mathematicsLeonhard Euler's polyhedron formula describes the structure of many objects-from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's theorem is so simple it can be explained to a child. From...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2019]
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-898 DE-859 DE-860 DE-20 DE-706 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | How a simple equation reshaped mathematicsLeonhard Euler's polyhedron formula describes the structure of many objects-from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's theorem is so simple it can be explained to a child. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2019) |
Beschreibung: | 1 Online-Ressource (XVI, 317 Seiten) Illustrationen |
ISBN: | 9780691191997 |
DOI: | 10.1515/9780691191997 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV046090090 | ||
003 | DE-604 | ||
005 | 20241113 | ||
007 | cr|uuu---uuuuu | ||
008 | 190806s2019 xx a||| o|||| 00||| eng d | ||
020 | |a 9780691191997 |9 978-0-691-19199-7 | ||
024 | 7 | |a 10.1515/9780691191997 |2 doi | |
035 | |a (ZDB-23-DGG)9780691191997 | ||
035 | |a (OCoLC)1112134735 | ||
035 | |a (DE-599)BVBBV046090090 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-20 |a DE-858 |a DE-898 |a DE-706 | ||
082 | 0 | |a 514.09 | |
100 | 1 | |a Richeson, David S. |e Verfasser |0 (DE-588)1197266526 |4 aut | |
245 | 1 | 0 | |a Euler's Gem |b he Polyhedron Formula and the birth of topology |c David S. Richeson |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (XVI, 317 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2019) | ||
520 | |a How a simple equation reshaped mathematicsLeonhard Euler's polyhedron formula describes the structure of many objects-from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's theorem is so simple it can be explained to a child. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / History & Philosophy |2 bisacsh | |
650 | 0 | 7 | |a Polyeder |0 (DE-588)4132101-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polyeder |0 (DE-588)4132101-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691191997 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA19 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031471092 | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-20 |p ZDB-23-DMA |q ZDB-23-DMA19 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691191997?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1815619880504786944 |
---|---|
adam_text | |
any_adam_object | |
author | Richeson, David S. |
author_GND | (DE-588)1197266526 |
author_facet | Richeson, David S. |
author_role | aut |
author_sort | Richeson, David S. |
author_variant | d s r ds dsr |
building | Verbundindex |
bvnumber | BV046090090 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9780691191997 (OCoLC)1112134735 (DE-599)BVBBV046090090 |
dewey-full | 514.09 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.09 |
dewey-search | 514.09 |
dewey-sort | 3514.09 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9780691191997 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV046090090</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241113</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190806s2019 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691191997</subfield><subfield code="9">978-0-691-19199-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691191997</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691191997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1112134735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046090090</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.09</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Richeson, David S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1197266526</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euler's Gem</subfield><subfield code="b">he Polyhedron Formula and the birth of topology</subfield><subfield code="c">David S. Richeson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 317 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">How a simple equation reshaped mathematicsLeonhard Euler's polyhedron formula describes the structure of many objects-from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's theorem is so simple it can be explained to a child. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / History & Philosophy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691191997</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA19</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031471092</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA19</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691191997?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046090090 |
illustrated | Illustrated |
indexdate | 2024-11-13T15:00:48Z |
institution | BVB |
isbn | 9780691191997 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031471092 |
oclc_num | 1112134735 |
open_access_boolean | |
owner | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-20 DE-858 DE-898 DE-BY-UBR DE-706 |
owner_facet | DE-1046 DE-Aug4 DE-859 DE-860 DE-739 DE-1043 DE-20 DE-858 DE-898 DE-BY-UBR DE-706 |
physical | 1 Online-Ressource (XVI, 317 Seiten) Illustrationen |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA19 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Princeton University Press |
record_format | marc |
spelling | Richeson, David S. Verfasser (DE-588)1197266526 aut Euler's Gem he Polyhedron Formula and the birth of topology David S. Richeson Princeton, NJ Princeton University Press [2019] © 2019 1 Online-Ressource (XVI, 317 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Description based on online resource; title from PDF title page (publisher's Web site, viewed 23. Jul 2019) How a simple equation reshaped mathematicsLeonhard Euler's polyhedron formula describes the structure of many objects-from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's theorem is so simple it can be explained to a child. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author In English MATHEMATICS / History & Philosophy bisacsh Polyeder (DE-588)4132101-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Polyeder (DE-588)4132101-7 s Topologie (DE-588)4060425-1 s Geschichte (DE-588)4020517-4 s 1\p DE-604 https://doi.org/10.1515/9780691191997 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Richeson, David S. Euler's Gem he Polyhedron Formula and the birth of topology MATHEMATICS / History & Philosophy bisacsh Polyeder (DE-588)4132101-7 gnd Topologie (DE-588)4060425-1 gnd Geschichte (DE-588)4020517-4 gnd |
subject_GND | (DE-588)4132101-7 (DE-588)4060425-1 (DE-588)4020517-4 |
title | Euler's Gem he Polyhedron Formula and the birth of topology |
title_auth | Euler's Gem he Polyhedron Formula and the birth of topology |
title_exact_search | Euler's Gem he Polyhedron Formula and the birth of topology |
title_full | Euler's Gem he Polyhedron Formula and the birth of topology David S. Richeson |
title_fullStr | Euler's Gem he Polyhedron Formula and the birth of topology David S. Richeson |
title_full_unstemmed | Euler's Gem he Polyhedron Formula and the birth of topology David S. Richeson |
title_short | Euler's Gem |
title_sort | euler s gem he polyhedron formula and the birth of topology |
title_sub | he Polyhedron Formula and the birth of topology |
topic | MATHEMATICS / History & Philosophy bisacsh Polyeder (DE-588)4132101-7 gnd Topologie (DE-588)4060425-1 gnd Geschichte (DE-588)4020517-4 gnd |
topic_facet | MATHEMATICS / History & Philosophy Polyeder Topologie Geschichte |
url | https://doi.org/10.1515/9780691191997 |
work_keys_str_mv | AT richesondavids eulersgemhepolyhedronformulaandthebirthoftopology |