Laser technology: applications in adhesion and related areas

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Laser Surface Modification and Adhesion Enhancement -- 1 Topographical Modification of Polymers and Metals by Laser Ablation to Create Superhydrophobic Surfaces -- 1.1 Introduction -- 1.2 Wetting Theory -- 1.3 Laser Ablation Bac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Mittal, K. L. 1945- (HerausgeberIn), Lei, Wei-Sheng 1966- (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Beverly Scrivener Publishing 2018
Hoboken Wiley
Schriftenreihe:Adhesion and adhesives: fundamental and applied aspects
Schlagworte:
Online-Zugang:FHN01
Volltext
Zusammenfassung:Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Laser Surface Modification and Adhesion Enhancement -- 1 Topographical Modification of Polymers and Metals by Laser Ablation to Create Superhydrophobic Surfaces -- 1.1 Introduction -- 1.2 Wetting Theory -- 1.3 Laser Ablation Background -- 1.3.1 Ablation Mechanics -- 1.3.2 Ablation in Metals -- 1.3.3 Ablation in Polymers -- 1.4 Preparation of Superhydrophobic Surfaces by Laser Ablation -- 1.4.1 Hydrophobic Organic Substrates -- 1.4.2 Hydrophilic Organic Substrates -- 1.4.3 Hydrophilic Substrates with Hydrophobic Coatings -- 1.4.4 Hydrophilic Inorganic Substrates -- 1.4.4.1 Metallic substrates -- 1.4.4.2 Silicon substrates -- 1.4.4.3 Ceramic Substrates -- 1.5 Summary -- References -- 2 Nonablative Laser Surface Modification -- 2.1 Introduction -- 2.2 Part 1 – Nonablative Laser Skin Photorejuvenation -- 2.2.1 Introduction -- 2.2.2 Nonablative Laser-Based Skin Treatments -- 2.2.3 Review of Nonablative Laser-Based Skin Treatments Based on Laser Type -- 2.2.3.1 Lasers Emitting at 532 nm -- 2.2.3.2 Lasers Emitting at 511, 578, 585, and 600 nm Wavelengths -- 2.2.3.3 Lasers Emitting at 780 nm -- 2.2.3.4 Lasers Emitting at 980 nm -- 2.2.3.5 Lasers Emitting at 1064 nm -- 2.2.3.6 Lasers Emitting at 1320 nm -- 2.2.3.7 Lasers Emitting at 1450 nm -- 2.2.3.8 Lasers Emitting at 1540 nm -- 2.2.3.9 Lasers Emitting at 2940 nm -- 2.2.4 Combined Techniques -- 2.2.5 Conclusions for Part 1 – Nonablative Laser Skin Photorejuvenation -- 2.3 Part 2 – Formation of Micro-/Nano-Structures and LIPSS in Materials by Nonablative Laser Processing -- 2.3.1 Introduction -- 2.3.2 Review of Micro-/Nano-Structures and LIPSS -- 2.3.2.1 Micro-/Nano-Structures and LIPSS Formation in Metals -- 2.3.2.2 Micro-/Mano-Structures and LIPSS Formation in Semiconductors
2.3.2.3 Micro-/Nano-Structures and LIPSS Formation in Dielectrics -- 2.3.2.4 Micro-/Nano-Structures and LIPSS Formation in Polymers -- 2.3.2.5 Micro-/Nano-Structures and LIPSS Formation in Multiple Materials -- 2.3.3 Part 2 –Conclusion for Formation of Micro-/Nano- Structures and LIPSS in Materials by Nonablative Laser Processing -- 2.4 Part 3 – Nonablative Laser Surface Modification to Alter the Surface Properties of Materials -- 2.4.1 Introduction -- 2.4.2 Examples of Nonablative Laser Surface Modification to Alter the Surface Properties of Materials -- 2.4.3 Conclusions for Part 3 – Nonablative Laser Surface Modification to Alter Surface Properties -- 2.5 Summary -- References -- 3 Wettability Characteristics of Laser Surface Engineered Polymers -- 3.1 Introduction -- 3.2 Lasers for Surface Engineering -- 3.2.1 Infrared Lasers for Surface Engineering -- 3.2.2 Ultraviolet Lasers for Surface Engineering -- 3.2.3 Ultrafast Pulsed Lasers for Surface Engineering -- 3.3 Laser Surface-Engineered Topography -- 3.4 Laser Surface-Engineered Wettability -- 3.5 Summary -- References -- 4 Laser Surface Modification for Adhesion Enhancement -- 4.1 Introduction -- 4.1.1 Mechanisms or Theories of Adhesion -- 4.1.2 Methods of Surface Modification for Adhesion Enhancement -- 4.2 Basic Mechanisms of Laser Surface Modification -- 4.2.1 Absorption of Laser Radiation in a Material -- 4.2.1.1 Linear Absorption -- 4.2.1.2 Nonlinear Absorption -- 4.2.2 Photo-Chemical Process -- 4.2.3 Photo-Thermal Process -- 4.2.3.1 Conventional Heat Flow Model -- 4.2.3.2 Two-Temperature Model -- 4.2.3.3 Ablation Rate and Ablation Spot Size -- 4.3 Laser Induced Surface Modification of Metal Substrates to Enhance Adhesion -- 4.3.1 Laser Induced Surface Cleaning and Activation for Adhesion Improvement -- 4.3.2 The Dominant Role of Mechanical Interlocking for Adhesion Improvement
4.3.3 Laser Surface Patterning -- 4.3.4 Laser Surface Topography Modification to Enhance Adhesion of Hard Coatings on Metals -- 4.3.5 Laser Surface Modification to Enhance Metal-to-Metal Adhesive Bonding -- 4.3.6 Laser Surface Modification of Metal Substrates to Enhance Adhesion of Polymeric Materials -- 4.4 Laser Induced Surface Modification of Polymers and Composites to Enhance Their Adhesion -- 4.4.1 Adhesion Improvement due to Laser Treatment -- 4.4.2 Changes in Surface Morphology of Laser Treated Surfaces -- 4.4.3 Chemical Modification of Laser Treated Surfaces -- 4.5 Summary -- References -- 5 Laser Surface Modification in Dentistry: Effect on the Adhesion of Restorative Materials -- 5.1 Introduction -- 5.2 Dental Structures -- 5.3 Adhesion of Restorative Materials -- 5.4 Laser Light Interaction with the Dental Substrate -- 5.5 Dental Structure Ablation and Influence on Bond Strength of Restorative Materials -- 5.6 Summary -- 5.7 Prospects -- References -- Part 2: Other Applications -- 6 Laser Polymer Welding -- 6.1 Introduction to Laser Polymer Welding -- 6.2 Theoretical Background -- 6.2.1 Reflection, Transmission and Absorption Behaviors -- 6.2.2 Heat Generation and Dissipation -- 6.2.3 Laser Welding Processes -- 6.3 Factors Affecting Polymer Laser Welding -- 6.3.1 Types of Processes for TTLW -- 6.3.2 Adapting Absorption to Welding Process -- 6.3.3 Design of Joint Geometry -- 6.4 Practical Applications -- 6.5 Testing and Quality Control -- 6.6 Future Prospects -- 6.7 Summary -- Acknowledgements -- References -- 7 Laser Based Adhesion Testing Technique to Measure Thin Film-Substrate Interface Toughness -- 7.1 Introduction -- 7.2 Modification of Laser Spallation Technique to Measure Thin Film-Substrate Interface Fracture Toughness -- 7.2.1 Sample Preparation -- 7.2.2 Experimental Procedure and Analysis -- 7.3 Parametric Studies
Beschreibung:1 Online-Ressource (xv, 421 Seiten) Illustrationen, Diagramme
ISBN:9781119185031

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen