An introduction to financial mathematics: option valuation
Gespeichert in:
Vorheriger Titel: | Junghenn, Hugo D., 1939- Option valuation |
---|---|
1. Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press, Taylor & Francis Group
[2019]
|
Ausgabe: | Second edition |
Schriftenreihe: | Chapman & Hall/CRC financial mathematics series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiii, 303 Seiten Illustrationen |
ISBN: | 9780367208820 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045867753 | ||
003 | DE-604 | ||
005 | 20190618 | ||
007 | t | ||
008 | 190509s2019 a||| |||| 00||| eng d | ||
020 | |a 9780367208820 |c hbk |9 978-0-367-20882-0 | ||
035 | |a (OCoLC)1100986176 | ||
035 | |a (DE-599)HEB44751816X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 |a DE-355 |a DE-11 | ||
084 | |a QP 890 |0 (DE-625)141965: |2 rvk | ||
100 | 1 | |a Junghenn, Hugo D. |d 1939- |e Verfasser |0 (DE-588)1089835477 |4 aut | |
245 | 1 | 0 | |a An introduction to financial mathematics |b option valuation |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton |b CRC Press, Taylor & Francis Group |c [2019] | |
300 | |a xiii, 303 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC financial mathematics series | |
650 | 0 | 7 | |a Option |0 (DE-588)4115452-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finanzmathematik |0 (DE-588)4017195-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Option |0 (DE-588)4115452-6 |D s |
689 | 0 | 1 | |a Finanzmathematik |0 (DE-588)4017195-4 |D s |
689 | 0 | |5 DE-604 | |
780 | 0 | 0 | |i Fortsetzung von |a Junghenn, Hugo D., 1939- |t Option valuation |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031251104&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-031251104 |
Datensatz im Suchindex
_version_ | 1804180009788637184 |
---|---|
adam_text | Contents Preface 1 xi Basic Finance 1.1 *1.2 1.3 1.4 *1.5 1.6 Interest ......................................................................................... Inflation...................................................................................... Annuities................................................................................... Bonds......................................................................................... Internal Rate of Return .............................................................. Exercises ................................................................................... 2 Probability Spaces 2.1 2.2 2.3 2.4 2.5 2.6 Sample Spaces and Events ....................................................... Discrete Probability Spaces.................................................... General Probability Spaces ....................................................... Conditional Probability .......................................................... Independence............................................................................ Exercises ...................................................................................... 3 Random Variables 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 Introduction ............................................................................ General Properties of RandomVariables ................................ Discrete Random Variables .................................................... Continuous Random Variables .............................................. Joint Distributions of RandomVariables
............................. Independent Random Variables.............................................. Identically Distributed Random Variables............................ Sums of Independent RandomVariables................................ Exercises ...................................................................................... Options and Arbitrage 4.1 4.2 4.3 4.4 4.5 4.6 The Price Process of an Asset .............................................. Arbitrage................................................................................... Classification of Derivatives.................................................... Forwards .................................................................................. Currency Forwards................................................................... Futures ......................................................................................... 1 1 3 4 10 11 13 17 17 18 21 26 30 31 35 35 37 38 42 44 46 48 48 51 55 55 56 58 59 60 61 vii
Contents viii *4.7 4.8 4.9 4.10 4.11 *4.12 4.13 Equality of Forward and Future Prices................................. Call and Put Options .............................................................. Properties of Options ................................................................. Dividend-Paying Stocks........................................................... Exotic Options.......................................................................... Portfolios and Payoff Diagrams.............................................. Exercises .................................................................................. 63 64 67 69 70 73 76 5 Discrete-Time Portfolio Processes 5.1 Discrete Time Stochastic Processes ..................................... 5.2 Portfolio Processes and the Value Process............................ 5.3 Self-Financing Trading Strategies........................................... 5.4 Equivalent Characterizations of Self-Financing ................... 5.5 Option Valuation by Portfolios................................................. 5.6 Exercises ................................................................................... 79 79 83 84 85 87 88 6 Expectation 91 6.1 Expectation of a Discrete Random Variable............................ 91 6.2 Expectation of a Continuous Random Variable................... 93 6.3 Basic Properties of Expectation ........................................... 95 6.4 Variance of a Random Variable.............................................. 96 6.5 Moment Generating Functions
.............................................. 98 6.6 The Strong Law of Large Numbers........................................ 99 6.7 The Central Limit Theorem..................................................... 100 6.8 Exercises ................................................................................... 102 7 The Binomial Model 107 7.1 Construction of the Binomial Model...........................................107 7.2 Completeness and Arbitrage in the Binomial Model ............... Ill 7.3 Path-Independent Claims....................................................... 115 *7.4 Path-Dependent Claims.......................................................... 119 7.5 Exercises .........................................................................................121 8 Conditional Expectation 8.1 Definition of Conditional Expectation .................................. 8.2 Examples of Conditional Expectations.................................. 8.3 Properties of Conditional Expectation.................................. 8.4 Special Cases............................................................................ *8.5 Existence of Conditional Expectation ................................. 8.6 Exercises ................................................................................... 125 125 126 128 130 132 134 9 Martingales in Discrete Time Markets 135 9.1 Discrete Time Martingales .................................................... 135 9.2 The Value Process as a Martingale..............................................137 9.3 A Martingale View of the Binomial Model
......................... 138 9.4 The Fundamental Theorems of Asset Pricing ...................... 140
Contents *9.5 9.6 Change of Probability............................................................ Exercises ................................................................................. 10 American Claims in Discrete-Time Markets 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Continuous-Time Stochastic Processes................................. Brownian Motion ................................................................... Stochastic Integrals ................................................................ The Ito-Doeblin Formula ....................................................... Stochastic Differential Equations.......................................... Exercises .................................................................................. 12 The Black-Scholes-Merton Model 12.1 12.2 12.3 12.4 *12.5 12.6 159 159 160 164 170 176 180 183 197 Continuous-Time Martingales...................................................... 197 Change of Probability and Girsanov’s Theorem........................ 201 Risk-Neutral Valuation of a Derivative................................. 204 Proofs of the Valuation Formulas.......................................... 205 Valuation under P .................................................................. 208 The Feynman-Kac Representation Theorem........................ 209 Exercises ........................................................................................211 14 Path-Independent Options 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 147 The Stock Price SDE ............................................................. 183
Continuous-Time Portfolios.................................................... 184 The Black-Scholes Formula .................................................... 185 Properties of the Black-Scholes Call Function..................... 188 The BS Formula as a Limit of CRR Formulas.......................... 191 Exercises .................................................................................. 194 13 Martingales in the Black-Scholes-Merton Model 13.1 13.2 13.3 13.4 *13.5 *13.6 13.7 142 144 Hedging an American Claim ...................................................... 147 Stopping Times ...................................................................... 149 Submartingales and Supermartingales ....................................... 151 Optimal Exercise of an American Claim.............................. 152 Hedging in the Binomial Model............................................. 154 Optimal Exercise in the Binomial Model ........................... 155 Exercises .................................................................................. 156 11 Stochastic Calculus 11.1 11.2 11.3 11.4 11.5 11.6 ix 213 Currency Options ................................................................... 213 Forward Start Options .......................................................... 216 Chooser Options...................................................................... 216 Compound Options ................................................................ 218 Quantos..................................................................................... 219 Options on
Dividend-Paying Stocks .......................................... 221 American Claims...................................................................... 224 Exercises .................................................................................. 226
x Contents 15 Path-Dependent Options 15.1 Barrier Options ....................................................................... 15.2 Lookback Options .................................................................... 15.3 Asian Options .......................................................................... 15.4 Other Options .......................................................................... 15.5 Exercises ................................................................................... 229 229 234 240 243 244 A Basic Combinatorics 249 В Solution of the BSM PDE 255 C Properties of the BSM Call Function 259 D Solutions to Odd-Numbered Problems 265 Bibliography 297 Index 299
|
any_adam_object | 1 |
author | Junghenn, Hugo D. 1939- |
author_GND | (DE-588)1089835477 |
author_facet | Junghenn, Hugo D. 1939- |
author_role | aut |
author_sort | Junghenn, Hugo D. 1939- |
author_variant | h d j hd hdj |
building | Verbundindex |
bvnumber | BV045867753 |
classification_rvk | QP 890 |
ctrlnum | (OCoLC)1100986176 (DE-599)HEB44751816X |
discipline | Wirtschaftswissenschaften |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01547nam a2200373 c 4500</leader><controlfield tag="001">BV045867753</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190618 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190509s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367208820</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-367-20882-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1100986176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB44751816X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 890</subfield><subfield code="0">(DE-625)141965:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Junghenn, Hugo D.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089835477</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to financial mathematics</subfield><subfield code="b">option valuation</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 303 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC financial mathematics series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Option</subfield><subfield code="0">(DE-588)4115452-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Option</subfield><subfield code="0">(DE-588)4115452-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Fortsetzung von</subfield><subfield code="a">Junghenn, Hugo D., 1939-</subfield><subfield code="t">Option valuation</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031251104&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031251104</subfield></datafield></record></collection> |
id | DE-604.BV045867753 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:28:57Z |
institution | BVB |
isbn | 9780367208820 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031251104 |
oclc_num | 1100986176 |
open_access_boolean | |
owner | DE-188 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-188 DE-355 DE-BY-UBR DE-11 |
physical | xiii, 303 Seiten Illustrationen |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Chapman & Hall/CRC financial mathematics series |
spelling | Junghenn, Hugo D. 1939- Verfasser (DE-588)1089835477 aut An introduction to financial mathematics option valuation Second edition Boca Raton CRC Press, Taylor & Francis Group [2019] xiii, 303 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Chapman & Hall/CRC financial mathematics series Option (DE-588)4115452-6 gnd rswk-swf Finanzmathematik (DE-588)4017195-4 gnd rswk-swf Option (DE-588)4115452-6 s Finanzmathematik (DE-588)4017195-4 s DE-604 Fortsetzung von Junghenn, Hugo D., 1939- Option valuation Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031251104&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Junghenn, Hugo D. 1939- An introduction to financial mathematics option valuation Option (DE-588)4115452-6 gnd Finanzmathematik (DE-588)4017195-4 gnd |
subject_GND | (DE-588)4115452-6 (DE-588)4017195-4 |
title | An introduction to financial mathematics option valuation |
title_auth | An introduction to financial mathematics option valuation |
title_exact_search | An introduction to financial mathematics option valuation |
title_full | An introduction to financial mathematics option valuation |
title_fullStr | An introduction to financial mathematics option valuation |
title_full_unstemmed | An introduction to financial mathematics option valuation |
title_old | Junghenn, Hugo D., 1939- Option valuation |
title_short | An introduction to financial mathematics |
title_sort | an introduction to financial mathematics option valuation |
title_sub | option valuation |
topic | Option (DE-588)4115452-6 gnd Finanzmathematik (DE-588)4017195-4 gnd |
topic_facet | Option Finanzmathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031251104&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT junghennhugod anintroductiontofinancialmathematicsoptionvaluation |