Information science for materials discovery and design:
This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2019]
|
Ausgabe: | Softcover reprint of the hardcover 1st edition 2016 |
Schriftenreihe: | Springer series in materials science
volume 225 |
Schlagworte: | |
Zusammenfassung: | This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a "fourth leg’’ to our toolkit to make the "Materials Genome'' a reality, the science of Materials Informatics |
Beschreibung: | xvii, 307 Seiten Illustrationen, Diagramme |
ISBN: | 9783319795416 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV045566866 | ||
003 | DE-604 | ||
005 | 20200313 | ||
007 | t | ||
008 | 190423s2019 a||| |||| 00||| eng d | ||
020 | |a 9783319795416 |c Print |9 978-3-319-79541-6 | ||
024 | 3 | |a 9783319795416 | |
035 | |a (OCoLC)1102421746 | ||
035 | |a (DE-599)BVBBV045566866 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-83 | ||
084 | |a ZM 2800 |0 (DE-625)157017: |2 rvk | ||
100 | 1 | |a Lookman, Turab |e Verfasser |0 (DE-588)1136630317 |4 aut | |
245 | 1 | 0 | |a Information science for materials discovery and design |c Turab Lookman, ..., editors |
250 | |a Softcover reprint of the hardcover 1st edition 2016 | ||
264 | 1 | |a Cham |b Springer |c [2019] | |
264 | 4 | |c © 2016 | |
300 | |a xvii, 307 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in materials science |v volume 225 | |
520 | |a This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. | ||
520 | |a Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. | ||
520 | |a Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a "fourth leg’’ to our toolkit to make the "Materials Genome'' a reality, the science of Materials Informatics | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Data mining | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Materials science | |
650 | 0 | 7 | |a Werkstoffforschung |0 (DE-588)4189670-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Technik/Sonstiges | ||
689 | 0 | 0 | |a Werkstoffforschung |0 (DE-588)4189670-1 |D s |
689 | 0 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, eBook |z 978-3-319-23871-5 |
830 | 0 | |a Springer series in materials science |v volume 225 |w (DE-604)BV000683335 |9 225 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030950516 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179553642348544 |
---|---|
any_adam_object | |
author | Lookman, Turab |
author_GND | (DE-588)1136630317 |
author_facet | Lookman, Turab |
author_role | aut |
author_sort | Lookman, Turab |
author_variant | t l tl |
building | Verbundindex |
bvnumber | BV045566866 |
classification_rvk | ZM 2800 |
ctrlnum | (OCoLC)1102421746 (DE-599)BVBBV045566866 |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
edition | Softcover reprint of the hardcover 1st edition 2016 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04130nam a2200625 cb4500</leader><controlfield tag="001">BV045566866</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200313 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190423s2019 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319795416</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-319-79541-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783319795416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1102421746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045566866</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 2800</subfield><subfield code="0">(DE-625)157017:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lookman, Turab</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136630317</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Information science for materials discovery and design</subfield><subfield code="c">Turab Lookman, ..., editors</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Softcover reprint of the hardcover 1st edition 2016</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 307 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in materials science</subfield><subfield code="v">volume 225</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. </subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a "fourth leg’’ to our toolkit to make the "Materials Genome'' a reality, the science of Materials Informatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffforschung</subfield><subfield code="0">(DE-588)4189670-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Technik/Sonstiges</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoffforschung</subfield><subfield code="0">(DE-588)4189670-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, eBook</subfield><subfield code="z">978-3-319-23871-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in materials science</subfield><subfield code="v">volume 225</subfield><subfield code="w">(DE-604)BV000683335</subfield><subfield code="9">225</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030950516</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045566866 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:21:42Z |
institution | BVB |
isbn | 9783319795416 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030950516 |
oclc_num | 1102421746 |
open_access_boolean | |
owner | DE-29T DE-83 |
owner_facet | DE-29T DE-83 |
physical | xvii, 307 Seiten Illustrationen, Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Springer |
record_format | marc |
series | Springer series in materials science |
series2 | Springer series in materials science |
spelling | Lookman, Turab Verfasser (DE-588)1136630317 aut Information science for materials discovery and design Turab Lookman, ..., editors Softcover reprint of the hardcover 1st edition 2016 Cham Springer [2019] © 2016 xvii, 307 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Springer series in materials science volume 225 This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a "fourth leg’’ to our toolkit to make the "Materials Genome'' a reality, the science of Materials Informatics bicssc bisacsh Nanotechnology Data mining Surfaces (Physics) Statistical physics Materials science Werkstoffforschung (DE-588)4189670-1 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Hardcover, Softcover / Technik/Sonstiges Werkstoffforschung (DE-588)4189670-1 s Datenverarbeitung (DE-588)4011152-0 s 1\p DE-604 Erscheint auch als Online-Ausgabe, eBook 978-3-319-23871-5 Springer series in materials science volume 225 (DE-604)BV000683335 225 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lookman, Turab Information science for materials discovery and design Springer series in materials science bicssc bisacsh Nanotechnology Data mining Surfaces (Physics) Statistical physics Materials science Werkstoffforschung (DE-588)4189670-1 gnd Datenverarbeitung (DE-588)4011152-0 gnd |
subject_GND | (DE-588)4189670-1 (DE-588)4011152-0 |
title | Information science for materials discovery and design |
title_auth | Information science for materials discovery and design |
title_exact_search | Information science for materials discovery and design |
title_full | Information science for materials discovery and design Turab Lookman, ..., editors |
title_fullStr | Information science for materials discovery and design Turab Lookman, ..., editors |
title_full_unstemmed | Information science for materials discovery and design Turab Lookman, ..., editors |
title_short | Information science for materials discovery and design |
title_sort | information science for materials discovery and design |
topic | bicssc bisacsh Nanotechnology Data mining Surfaces (Physics) Statistical physics Materials science Werkstoffforschung (DE-588)4189670-1 gnd Datenverarbeitung (DE-588)4011152-0 gnd |
topic_facet | bicssc bisacsh Nanotechnology Data mining Surfaces (Physics) Statistical physics Materials science Werkstoffforschung Datenverarbeitung |
volume_link | (DE-604)BV000683335 |
work_keys_str_mv | AT lookmanturab informationscienceformaterialsdiscoveryanddesign |