Photoelectricochemical Solar Cells:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: General Concepts and Photoelectrochemical Systems -- 1 Photoelectrochemical Reaction Engineering for Solar Fuels Production -- 1.1 Introduction -- 1.1.1 Undeveloped Power of Renewables -- 1.1.2 Comparison Solar Hydrogen from Dif...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2019
|
Schriftenreihe: | Advances in Solar Cell Materials and Storage (ASCMS)
|
Online-Zugang: | TUM01 Volltext |
Zusammenfassung: | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: General Concepts and Photoelectrochemical Systems -- 1 Photoelectrochemical Reaction Engineering for Solar Fuels Production -- 1.1 Introduction -- 1.1.1 Undeveloped Power of Renewables -- 1.1.2 Comparison Solar Hydrogen from Different Sources -- 1.1.3 Economic Targets for Hydrogen Production and PEC Systems -- 1.1.4 Goals of Using Hydrogen -- 1.2 Theory and Classification of PEC Systems -- 1.2.1 Classification Framework for PEC Cell Conceptual Design -- 1.2.2 Classification Framework for Design of PEC Devices -- 1.2.3 Integrated Device vs PV + Electrolysis -- 1.3 Scaling Up of PEC Reactors -- 1.4 Reactor Designs -- 1.5 System-Level Design -- 1.6 Outlook -- 1.6.1 Future Reactor Designs -- 1.6.1.1 Perforated Designs -- 1.6.1.2 Membrane-Less and Microfluidic Designs -- 1.6.1.3 Redox-Mediated Systems -- 1.6.2 Avenues for Future Research -- 1.6.2.1 Intensification and Waste Heat Utilization -- 1.6.2.2 Usefulness of Oxidation and Coupled Process with Hydrogen Generation -- 1.7 Summary and Conclusions -- References -- 2 The Measurements and Efficiency Definition Protocols in Photoelectrochemical Solar Hydrogen Generation -- 2.1 Introduction -- 2.2 PEC Measurement -- 2.2.1 Measurements of Optical Properties -- 2.2.2 Polarization Curve Measurements -- 2.2.3 Photocurrent Transients Measurements -- 2.2.4 IPCE and APCE Measurements -- 2.2.5 Mott-Schottky Measurements -- 2.2.6 Measurement (Calculation) of Charge Separation Efficiency -- 2.2.7 Measurements of Charge Injection Efficiency -- 2.2.8 Gas Evolution Measurements -- 2.3 The Efficiency Definition Protocols in PEC Water Splitting -- 2.3.1 Solar-to-Hydrogen Conversion Efficiency -- 2.3.2 Applied Bias Photon-to-Current Efficiency -- 2.3.3 IPCE and APCE -- 2.4 Summary -- References 3 Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production -- 3.1 Introduction -- 3.2 Photoelctrochemical (PEC) Cells -- 3.2.1 Solar-to-Hydrogen (STH) Conversion Efficiency -- 3.2.2 Applied Bias Photon-to-Current Efficiency (ABPE) -- 3.2.3 External Quantum Efficiency (EQE) or Incident Photon-to-Current Efficiency (IPCE) -- 3.2.4 Internal Quantum Efficiency (IQE) or a Absorbed Photon-to-Current Efficiency (APCE) -- 3.3 Monometal Oxide Systems for PEC H2 Generation -- 3.3.1 Titanium Dioxide (TiO2) -- 3.3.2 Zinc Oxide (ZnO) -- 3.3.3 Tungsten Oxide (WO3) -- 3.3.4 Iron Oxide (Fe2O3) -- 3.3.5 Bismuth Vandate (BiVO4) -- 3.4 Complex Nanostructures for PEC Splitting of Water -- 3.4.1 Plasmonic Metal Semiconductor Composite Photoelectrodes -- 3.4.2 Semiconductor Heterojunctions -- 3.4.3 Quantum Dots Sensitized Semiconductor Photoelectrodes -- 3.4.4 Synergistic Effect in Semiconductor Photoelectrodes -- 3.4.5 Biosensitized Semiconductor Photoelectrodes -- 3.4.6 Tandem Stand-Alone PEC Water-Splitting Device -- 3.5 Conclusion and Outlook -- Acknowledgments -- References -- 4 Hydrogen Generation from Photoelectrochemical Water Splitting -- 4.1 Introduction -- 4.2 Principle of Photoelectrochemical (PEC) Hydrogen Generation -- 4.3 Photoeletrode Materials -- 4.3.1 Photoanode Materials -- 4.3.1.1 TiO2-Based Photoelectrode -- 4.3.1.2 BiVO4-Based Photoelectrode -- 4.3.1.3 α-Fe2O3-Based Photoelectrode -- 4.3.2 Photocathode Materials -- 4.3.2.1 Copper-Based Chalcogenides-Based Photoelectrode -- 4.3.2.2 Silicon-Based Photoelectrode -- 4.3.2.3 Cu2O-Based Photoelectrode -- 4.3.2.4 III-V Group Materials -- 4.3.2.5 CdS-Based Photoelectrode -- 4.4 Advances in Photoelectrochemical (PEC) Hydrogen Generation -- 4.4.1 Monocomponent Catalyst -- 4.4.2 Functional Cocatalyst -- 4.4.3 Z-Scheme Catalyst -- 4.5 Pros and cons of photoelectrodes and photocatalysts 4.6 Conclusion and Outlook -- Acknowledgments -- References -- Part II: Photoactive Materials for Solar Hydrogen Generation -- 5 Hematite Materials for Solar-Driven Photoelectrochemical Cells -- 5.1 Introduction -- 5.2 Physical Properties of Hematite -- 5.2.1 Crystal Structure -- 5.2.2 Optical Properties -- 5.2.3 Electronic Properties -- 5.2.4 Band Structure -- 5.2.5 Overview of Hematite Bottlenecks and Corresponding Strategies -- 5.2.5.1 Addressing Poor Light Absorption Efficiency -- 5.2.5.2 Addressing Fast Charge Carrier Recombination -- 5.2.5.3 Addressing Sluggish Water Oxidation Kinetics -- 5.3 Experimental Strategies to Enhance the Photoactivity of Hematite -- 5.3.1 Nanostructuring -- 5.3.1.1 Direct Synthesis -- 5.3.1.2 In Situ Structural Transformation -- 5.3.1.3 "Locking" Nanostructures -- 5.3.2 Doping -- 5.3.2.1 Oxygen Vacancies -- 5.3.2.2 Foreign Ion Doping -- 5.3.3 Construction of Heterojunctions -- 5.3.3.1 Semiconducting Overlayers -- 5.3.3.2 Sensitization and Tandem Cells -- 5.3.3.3 OER Catalysts -- 5.3.3.4 Engineering of Current Collectors -- 5.4 Fundamental Characteristics of the PEC Behaviors of Hematite -- 5.4.1 Transient Absorption Spectroscopy -- 5.4.2 Effects of Morphology -- 5.4.3 Effect of Doping -- 5.4.3.1 Oxygen (O) Vacancies -- 5.4.3.2 n-type Dopants -- 5.4.3.3 p-type Dopants -- 5.4.3.4 Isovalent Dopants -- 5.4.3.5 Multiple Dopants -- 5.4.4 Effect of Water Oxidation Catalysts -- 5.4.4.1 Mechanism of Uncatalyzed Water Oxidation -- 5.4.4.2 Mechanism of Catalyzed Water Oxidation -- 5.4.5 Effect of Heterojunctions -- 5.4.5.1 Facilitating Charge Separation and Transfer -- 5.4.5.2 Surface Passivation -- 5.4.5.3 Back-Contact Engineering -- 5.5 Summary -- References -- 6 Design of Bismuth Vanadate-Based Materials: New Advanced Photoanodes for Solar Hydrogen Generation -- 6.1 Introduction |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781119460008 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV045536226 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190401s2019 |||| o||u| ||||||eng d | ||
020 | |a 9781119460008 |9 978-1-119-46000-8 | ||
024 | 7 | |a 10.1002/9781119460008 |2 doi | |
035 | |a (OCoLC)1091664235 | ||
035 | |a (DE-599)BVBBV045536226 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
084 | |a ZN 5160 |0 (DE-625)157437: |2 rvk | ||
100 | 1 | |a Demirci Sankir, Nurdan |e Verfasser |0 (DE-588)1137271973 |4 aut | |
245 | 1 | 0 | |a Photoelectricochemical Solar Cells |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2019 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Solar Cell Materials and Storage (ASCMS) | |
520 | 3 | |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: General Concepts and Photoelectrochemical Systems -- 1 Photoelectrochemical Reaction Engineering for Solar Fuels Production -- 1.1 Introduction -- 1.1.1 Undeveloped Power of Renewables -- 1.1.2 Comparison Solar Hydrogen from Different Sources -- 1.1.3 Economic Targets for Hydrogen Production and PEC Systems -- 1.1.4 Goals of Using Hydrogen -- 1.2 Theory and Classification of PEC Systems -- 1.2.1 Classification Framework for PEC Cell Conceptual Design -- 1.2.2 Classification Framework for Design of PEC Devices -- 1.2.3 Integrated Device vs PV + Electrolysis -- 1.3 Scaling Up of PEC Reactors -- 1.4 Reactor Designs -- 1.5 System-Level Design -- 1.6 Outlook -- 1.6.1 Future Reactor Designs -- 1.6.1.1 Perforated Designs -- 1.6.1.2 Membrane-Less and Microfluidic Designs -- 1.6.1.3 Redox-Mediated Systems -- 1.6.2 Avenues for Future Research -- 1.6.2.1 Intensification and Waste Heat Utilization -- 1.6.2.2 Usefulness of Oxidation and Coupled Process with Hydrogen Generation -- 1.7 Summary and Conclusions -- References -- 2 The Measurements and Efficiency Definition Protocols in Photoelectrochemical Solar Hydrogen Generation -- 2.1 Introduction -- 2.2 PEC Measurement -- 2.2.1 Measurements of Optical Properties -- 2.2.2 Polarization Curve Measurements -- 2.2.3 Photocurrent Transients Measurements -- 2.2.4 IPCE and APCE Measurements -- 2.2.5 Mott-Schottky Measurements -- 2.2.6 Measurement (Calculation) of Charge Separation Efficiency -- 2.2.7 Measurements of Charge Injection Efficiency -- 2.2.8 Gas Evolution Measurements -- 2.3 The Efficiency Definition Protocols in PEC Water Splitting -- 2.3.1 Solar-to-Hydrogen Conversion Efficiency -- 2.3.2 Applied Bias Photon-to-Current Efficiency -- 2.3.3 IPCE and APCE -- 2.4 Summary -- References | |
520 | 3 | |a 3 Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production -- 3.1 Introduction -- 3.2 Photoelctrochemical (PEC) Cells -- 3.2.1 Solar-to-Hydrogen (STH) Conversion Efficiency -- 3.2.2 Applied Bias Photon-to-Current Efficiency (ABPE) -- 3.2.3 External Quantum Efficiency (EQE) or Incident Photon-to-Current Efficiency (IPCE) -- 3.2.4 Internal Quantum Efficiency (IQE) or a Absorbed Photon-to-Current Efficiency (APCE) -- 3.3 Monometal Oxide Systems for PEC H2 Generation -- 3.3.1 Titanium Dioxide (TiO2) -- 3.3.2 Zinc Oxide (ZnO) -- 3.3.3 Tungsten Oxide (WO3) -- 3.3.4 Iron Oxide (Fe2O3) -- 3.3.5 Bismuth Vandate (BiVO4) -- 3.4 Complex Nanostructures for PEC Splitting of Water -- 3.4.1 Plasmonic Metal Semiconductor Composite Photoelectrodes -- 3.4.2 Semiconductor Heterojunctions -- 3.4.3 Quantum Dots Sensitized Semiconductor Photoelectrodes -- 3.4.4 Synergistic Effect in Semiconductor Photoelectrodes -- 3.4.5 Biosensitized Semiconductor Photoelectrodes -- 3.4.6 Tandem Stand-Alone PEC Water-Splitting Device -- 3.5 Conclusion and Outlook -- Acknowledgments -- References -- 4 Hydrogen Generation from Photoelectrochemical Water Splitting -- 4.1 Introduction -- 4.2 Principle of Photoelectrochemical (PEC) Hydrogen Generation -- 4.3 Photoeletrode Materials -- 4.3.1 Photoanode Materials -- 4.3.1.1 TiO2-Based Photoelectrode -- 4.3.1.2 BiVO4-Based Photoelectrode -- 4.3.1.3 α-Fe2O3-Based Photoelectrode -- 4.3.2 Photocathode Materials -- 4.3.2.1 Copper-Based Chalcogenides-Based Photoelectrode -- 4.3.2.2 Silicon-Based Photoelectrode -- 4.3.2.3 Cu2O-Based Photoelectrode -- 4.3.2.4 III-V Group Materials -- 4.3.2.5 CdS-Based Photoelectrode -- 4.4 Advances in Photoelectrochemical (PEC) Hydrogen Generation -- 4.4.1 Monocomponent Catalyst -- 4.4.2 Functional Cocatalyst -- 4.4.3 Z-Scheme Catalyst -- 4.5 Pros and cons of photoelectrodes and photocatalysts | |
520 | 3 | |a 4.6 Conclusion and Outlook -- Acknowledgments -- References -- Part II: Photoactive Materials for Solar Hydrogen Generation -- 5 Hematite Materials for Solar-Driven Photoelectrochemical Cells -- 5.1 Introduction -- 5.2 Physical Properties of Hematite -- 5.2.1 Crystal Structure -- 5.2.2 Optical Properties -- 5.2.3 Electronic Properties -- 5.2.4 Band Structure -- 5.2.5 Overview of Hematite Bottlenecks and Corresponding Strategies -- 5.2.5.1 Addressing Poor Light Absorption Efficiency -- 5.2.5.2 Addressing Fast Charge Carrier Recombination -- 5.2.5.3 Addressing Sluggish Water Oxidation Kinetics -- 5.3 Experimental Strategies to Enhance the Photoactivity of Hematite -- 5.3.1 Nanostructuring -- 5.3.1.1 Direct Synthesis -- 5.3.1.2 In Situ Structural Transformation -- 5.3.1.3 "Locking" Nanostructures -- 5.3.2 Doping -- 5.3.2.1 Oxygen Vacancies -- 5.3.2.2 Foreign Ion Doping -- 5.3.3 Construction of Heterojunctions -- 5.3.3.1 Semiconducting Overlayers -- 5.3.3.2 Sensitization and Tandem Cells -- 5.3.3.3 OER Catalysts -- 5.3.3.4 Engineering of Current Collectors -- 5.4 Fundamental Characteristics of the PEC Behaviors of Hematite -- 5.4.1 Transient Absorption Spectroscopy -- 5.4.2 Effects of Morphology -- 5.4.3 Effect of Doping -- 5.4.3.1 Oxygen (O) Vacancies -- 5.4.3.2 n-type Dopants -- 5.4.3.3 p-type Dopants -- 5.4.3.4 Isovalent Dopants -- 5.4.3.5 Multiple Dopants -- 5.4.4 Effect of Water Oxidation Catalysts -- 5.4.4.1 Mechanism of Uncatalyzed Water Oxidation -- 5.4.4.2 Mechanism of Catalyzed Water Oxidation -- 5.4.5 Effect of Heterojunctions -- 5.4.5.1 Facilitating Charge Separation and Transfer -- 5.4.5.2 Surface Passivation -- 5.4.5.3 Back-Contact Engineering -- 5.5 Summary -- References -- 6 Design of Bismuth Vanadate-Based Materials: New Advanced Photoanodes for Solar Hydrogen Generation -- 6.1 Introduction | |
700 | 1 | |a Sankir, Mehmet |e Sonstige |0 (DE-588)1137272104 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-119-45993-4 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460008 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030920235 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460008 |l TUM01 |p ZDB-35-WIC |q TUM_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804179498491445249 |
---|---|
any_adam_object | |
author | Demirci Sankir, Nurdan |
author_GND | (DE-588)1137271973 (DE-588)1137272104 |
author_facet | Demirci Sankir, Nurdan |
author_role | aut |
author_sort | Demirci Sankir, Nurdan |
author_variant | s n d sn snd |
building | Verbundindex |
bvnumber | BV045536226 |
classification_rvk | VN 6050 ZN 5160 |
collection | ZDB-35-WIC |
ctrlnum | (OCoLC)1091664235 (DE-599)BVBBV045536226 |
discipline | Chemie / Pharmazie Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06960nmm a2200397 c 4500</leader><controlfield tag="001">BV045536226</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190401s2019 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119460008</subfield><subfield code="9">978-1-119-46000-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119460008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1091664235</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045536226</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5160</subfield><subfield code="0">(DE-625)157437:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Demirci Sankir, Nurdan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1137271973</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photoelectricochemical Solar Cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Solar Cell Materials and Storage (ASCMS)</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: General Concepts and Photoelectrochemical Systems -- 1 Photoelectrochemical Reaction Engineering for Solar Fuels Production -- 1.1 Introduction -- 1.1.1 Undeveloped Power of Renewables -- 1.1.2 Comparison Solar Hydrogen from Different Sources -- 1.1.3 Economic Targets for Hydrogen Production and PEC Systems -- 1.1.4 Goals of Using Hydrogen -- 1.2 Theory and Classification of PEC Systems -- 1.2.1 Classification Framework for PEC Cell Conceptual Design -- 1.2.2 Classification Framework for Design of PEC Devices -- 1.2.3 Integrated Device vs PV + Electrolysis -- 1.3 Scaling Up of PEC Reactors -- 1.4 Reactor Designs -- 1.5 System-Level Design -- 1.6 Outlook -- 1.6.1 Future Reactor Designs -- 1.6.1.1 Perforated Designs -- 1.6.1.2 Membrane-Less and Microfluidic Designs -- 1.6.1.3 Redox-Mediated Systems -- 1.6.2 Avenues for Future Research -- 1.6.2.1 Intensification and Waste Heat Utilization -- 1.6.2.2 Usefulness of Oxidation and Coupled Process with Hydrogen Generation -- 1.7 Summary and Conclusions -- References -- 2 The Measurements and Efficiency Definition Protocols in Photoelectrochemical Solar Hydrogen Generation -- 2.1 Introduction -- 2.2 PEC Measurement -- 2.2.1 Measurements of Optical Properties -- 2.2.2 Polarization Curve Measurements -- 2.2.3 Photocurrent Transients Measurements -- 2.2.4 IPCE and APCE Measurements -- 2.2.5 Mott-Schottky Measurements -- 2.2.6 Measurement (Calculation) of Charge Separation Efficiency -- 2.2.7 Measurements of Charge Injection Efficiency -- 2.2.8 Gas Evolution Measurements -- 2.3 The Efficiency Definition Protocols in PEC Water Splitting -- 2.3.1 Solar-to-Hydrogen Conversion Efficiency -- 2.3.2 Applied Bias Photon-to-Current Efficiency -- 2.3.3 IPCE and APCE -- 2.4 Summary -- References</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3 Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production -- 3.1 Introduction -- 3.2 Photoelctrochemical (PEC) Cells -- 3.2.1 Solar-to-Hydrogen (STH) Conversion Efficiency -- 3.2.2 Applied Bias Photon-to-Current Efficiency (ABPE) -- 3.2.3 External Quantum Efficiency (EQE) or Incident Photon-to-Current Efficiency (IPCE) -- 3.2.4 Internal Quantum Efficiency (IQE) or a Absorbed Photon-to-Current Efficiency (APCE) -- 3.3 Monometal Oxide Systems for PEC H2 Generation -- 3.3.1 Titanium Dioxide (TiO2) -- 3.3.2 Zinc Oxide (ZnO) -- 3.3.3 Tungsten Oxide (WO3) -- 3.3.4 Iron Oxide (Fe2O3) -- 3.3.5 Bismuth Vandate (BiVO4) -- 3.4 Complex Nanostructures for PEC Splitting of Water -- 3.4.1 Plasmonic Metal Semiconductor Composite Photoelectrodes -- 3.4.2 Semiconductor Heterojunctions -- 3.4.3 Quantum Dots Sensitized Semiconductor Photoelectrodes -- 3.4.4 Synergistic Effect in Semiconductor Photoelectrodes -- 3.4.5 Biosensitized Semiconductor Photoelectrodes -- 3.4.6 Tandem Stand-Alone PEC Water-Splitting Device -- 3.5 Conclusion and Outlook -- Acknowledgments -- References -- 4 Hydrogen Generation from Photoelectrochemical Water Splitting -- 4.1 Introduction -- 4.2 Principle of Photoelectrochemical (PEC) Hydrogen Generation -- 4.3 Photoeletrode Materials -- 4.3.1 Photoanode Materials -- 4.3.1.1 TiO2-Based Photoelectrode -- 4.3.1.2 BiVO4-Based Photoelectrode -- 4.3.1.3 α-Fe2O3-Based Photoelectrode -- 4.3.2 Photocathode Materials -- 4.3.2.1 Copper-Based Chalcogenides-Based Photoelectrode -- 4.3.2.2 Silicon-Based Photoelectrode -- 4.3.2.3 Cu2O-Based Photoelectrode -- 4.3.2.4 III-V Group Materials -- 4.3.2.5 CdS-Based Photoelectrode -- 4.4 Advances in Photoelectrochemical (PEC) Hydrogen Generation -- 4.4.1 Monocomponent Catalyst -- 4.4.2 Functional Cocatalyst -- 4.4.3 Z-Scheme Catalyst -- 4.5 Pros and cons of photoelectrodes and photocatalysts</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">4.6 Conclusion and Outlook -- Acknowledgments -- References -- Part II: Photoactive Materials for Solar Hydrogen Generation -- 5 Hematite Materials for Solar-Driven Photoelectrochemical Cells -- 5.1 Introduction -- 5.2 Physical Properties of Hematite -- 5.2.1 Crystal Structure -- 5.2.2 Optical Properties -- 5.2.3 Electronic Properties -- 5.2.4 Band Structure -- 5.2.5 Overview of Hematite Bottlenecks and Corresponding Strategies -- 5.2.5.1 Addressing Poor Light Absorption Efficiency -- 5.2.5.2 Addressing Fast Charge Carrier Recombination -- 5.2.5.3 Addressing Sluggish Water Oxidation Kinetics -- 5.3 Experimental Strategies to Enhance the Photoactivity of Hematite -- 5.3.1 Nanostructuring -- 5.3.1.1 Direct Synthesis -- 5.3.1.2 In Situ Structural Transformation -- 5.3.1.3 "Locking" Nanostructures -- 5.3.2 Doping -- 5.3.2.1 Oxygen Vacancies -- 5.3.2.2 Foreign Ion Doping -- 5.3.3 Construction of Heterojunctions -- 5.3.3.1 Semiconducting Overlayers -- 5.3.3.2 Sensitization and Tandem Cells -- 5.3.3.3 OER Catalysts -- 5.3.3.4 Engineering of Current Collectors -- 5.4 Fundamental Characteristics of the PEC Behaviors of Hematite -- 5.4.1 Transient Absorption Spectroscopy -- 5.4.2 Effects of Morphology -- 5.4.3 Effect of Doping -- 5.4.3.1 Oxygen (O) Vacancies -- 5.4.3.2 n-type Dopants -- 5.4.3.3 p-type Dopants -- 5.4.3.4 Isovalent Dopants -- 5.4.3.5 Multiple Dopants -- 5.4.4 Effect of Water Oxidation Catalysts -- 5.4.4.1 Mechanism of Uncatalyzed Water Oxidation -- 5.4.4.2 Mechanism of Catalyzed Water Oxidation -- 5.4.5 Effect of Heterojunctions -- 5.4.5.1 Facilitating Charge Separation and Transfer -- 5.4.5.2 Surface Passivation -- 5.4.5.3 Back-Contact Engineering -- 5.5 Summary -- References -- 6 Design of Bismuth Vanadate-Based Materials: New Advanced Photoanodes for Solar Hydrogen Generation -- 6.1 Introduction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sankir, Mehmet</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1137272104</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-119-45993-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460008</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030920235</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460008</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045536226 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:20:49Z |
institution | BVB |
isbn | 9781119460008 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030920235 |
oclc_num | 1091664235 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-35-WIC ZDB-35-WIC TUM_Einzelkauf |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
series2 | Advances in Solar Cell Materials and Storage (ASCMS) |
spelling | Demirci Sankir, Nurdan Verfasser (DE-588)1137271973 aut Photoelectricochemical Solar Cells Newark John Wiley & Sons, Incorporated 2019 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Advances in Solar Cell Materials and Storage (ASCMS) Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: General Concepts and Photoelectrochemical Systems -- 1 Photoelectrochemical Reaction Engineering for Solar Fuels Production -- 1.1 Introduction -- 1.1.1 Undeveloped Power of Renewables -- 1.1.2 Comparison Solar Hydrogen from Different Sources -- 1.1.3 Economic Targets for Hydrogen Production and PEC Systems -- 1.1.4 Goals of Using Hydrogen -- 1.2 Theory and Classification of PEC Systems -- 1.2.1 Classification Framework for PEC Cell Conceptual Design -- 1.2.2 Classification Framework for Design of PEC Devices -- 1.2.3 Integrated Device vs PV + Electrolysis -- 1.3 Scaling Up of PEC Reactors -- 1.4 Reactor Designs -- 1.5 System-Level Design -- 1.6 Outlook -- 1.6.1 Future Reactor Designs -- 1.6.1.1 Perforated Designs -- 1.6.1.2 Membrane-Less and Microfluidic Designs -- 1.6.1.3 Redox-Mediated Systems -- 1.6.2 Avenues for Future Research -- 1.6.2.1 Intensification and Waste Heat Utilization -- 1.6.2.2 Usefulness of Oxidation and Coupled Process with Hydrogen Generation -- 1.7 Summary and Conclusions -- References -- 2 The Measurements and Efficiency Definition Protocols in Photoelectrochemical Solar Hydrogen Generation -- 2.1 Introduction -- 2.2 PEC Measurement -- 2.2.1 Measurements of Optical Properties -- 2.2.2 Polarization Curve Measurements -- 2.2.3 Photocurrent Transients Measurements -- 2.2.4 IPCE and APCE Measurements -- 2.2.5 Mott-Schottky Measurements -- 2.2.6 Measurement (Calculation) of Charge Separation Efficiency -- 2.2.7 Measurements of Charge Injection Efficiency -- 2.2.8 Gas Evolution Measurements -- 2.3 The Efficiency Definition Protocols in PEC Water Splitting -- 2.3.1 Solar-to-Hydrogen Conversion Efficiency -- 2.3.2 Applied Bias Photon-to-Current Efficiency -- 2.3.3 IPCE and APCE -- 2.4 Summary -- References 3 Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production -- 3.1 Introduction -- 3.2 Photoelctrochemical (PEC) Cells -- 3.2.1 Solar-to-Hydrogen (STH) Conversion Efficiency -- 3.2.2 Applied Bias Photon-to-Current Efficiency (ABPE) -- 3.2.3 External Quantum Efficiency (EQE) or Incident Photon-to-Current Efficiency (IPCE) -- 3.2.4 Internal Quantum Efficiency (IQE) or a Absorbed Photon-to-Current Efficiency (APCE) -- 3.3 Monometal Oxide Systems for PEC H2 Generation -- 3.3.1 Titanium Dioxide (TiO2) -- 3.3.2 Zinc Oxide (ZnO) -- 3.3.3 Tungsten Oxide (WO3) -- 3.3.4 Iron Oxide (Fe2O3) -- 3.3.5 Bismuth Vandate (BiVO4) -- 3.4 Complex Nanostructures for PEC Splitting of Water -- 3.4.1 Plasmonic Metal Semiconductor Composite Photoelectrodes -- 3.4.2 Semiconductor Heterojunctions -- 3.4.3 Quantum Dots Sensitized Semiconductor Photoelectrodes -- 3.4.4 Synergistic Effect in Semiconductor Photoelectrodes -- 3.4.5 Biosensitized Semiconductor Photoelectrodes -- 3.4.6 Tandem Stand-Alone PEC Water-Splitting Device -- 3.5 Conclusion and Outlook -- Acknowledgments -- References -- 4 Hydrogen Generation from Photoelectrochemical Water Splitting -- 4.1 Introduction -- 4.2 Principle of Photoelectrochemical (PEC) Hydrogen Generation -- 4.3 Photoeletrode Materials -- 4.3.1 Photoanode Materials -- 4.3.1.1 TiO2-Based Photoelectrode -- 4.3.1.2 BiVO4-Based Photoelectrode -- 4.3.1.3 α-Fe2O3-Based Photoelectrode -- 4.3.2 Photocathode Materials -- 4.3.2.1 Copper-Based Chalcogenides-Based Photoelectrode -- 4.3.2.2 Silicon-Based Photoelectrode -- 4.3.2.3 Cu2O-Based Photoelectrode -- 4.3.2.4 III-V Group Materials -- 4.3.2.5 CdS-Based Photoelectrode -- 4.4 Advances in Photoelectrochemical (PEC) Hydrogen Generation -- 4.4.1 Monocomponent Catalyst -- 4.4.2 Functional Cocatalyst -- 4.4.3 Z-Scheme Catalyst -- 4.5 Pros and cons of photoelectrodes and photocatalysts 4.6 Conclusion and Outlook -- Acknowledgments -- References -- Part II: Photoactive Materials for Solar Hydrogen Generation -- 5 Hematite Materials for Solar-Driven Photoelectrochemical Cells -- 5.1 Introduction -- 5.2 Physical Properties of Hematite -- 5.2.1 Crystal Structure -- 5.2.2 Optical Properties -- 5.2.3 Electronic Properties -- 5.2.4 Band Structure -- 5.2.5 Overview of Hematite Bottlenecks and Corresponding Strategies -- 5.2.5.1 Addressing Poor Light Absorption Efficiency -- 5.2.5.2 Addressing Fast Charge Carrier Recombination -- 5.2.5.3 Addressing Sluggish Water Oxidation Kinetics -- 5.3 Experimental Strategies to Enhance the Photoactivity of Hematite -- 5.3.1 Nanostructuring -- 5.3.1.1 Direct Synthesis -- 5.3.1.2 In Situ Structural Transformation -- 5.3.1.3 "Locking" Nanostructures -- 5.3.2 Doping -- 5.3.2.1 Oxygen Vacancies -- 5.3.2.2 Foreign Ion Doping -- 5.3.3 Construction of Heterojunctions -- 5.3.3.1 Semiconducting Overlayers -- 5.3.3.2 Sensitization and Tandem Cells -- 5.3.3.3 OER Catalysts -- 5.3.3.4 Engineering of Current Collectors -- 5.4 Fundamental Characteristics of the PEC Behaviors of Hematite -- 5.4.1 Transient Absorption Spectroscopy -- 5.4.2 Effects of Morphology -- 5.4.3 Effect of Doping -- 5.4.3.1 Oxygen (O) Vacancies -- 5.4.3.2 n-type Dopants -- 5.4.3.3 p-type Dopants -- 5.4.3.4 Isovalent Dopants -- 5.4.3.5 Multiple Dopants -- 5.4.4 Effect of Water Oxidation Catalysts -- 5.4.4.1 Mechanism of Uncatalyzed Water Oxidation -- 5.4.4.2 Mechanism of Catalyzed Water Oxidation -- 5.4.5 Effect of Heterojunctions -- 5.4.5.1 Facilitating Charge Separation and Transfer -- 5.4.5.2 Surface Passivation -- 5.4.5.3 Back-Contact Engineering -- 5.5 Summary -- References -- 6 Design of Bismuth Vanadate-Based Materials: New Advanced Photoanodes for Solar Hydrogen Generation -- 6.1 Introduction Sankir, Mehmet Sonstige (DE-588)1137272104 oth Erscheint auch als Druck-Ausgabe 978-1-119-45993-4 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460008 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Demirci Sankir, Nurdan Photoelectricochemical Solar Cells |
title | Photoelectricochemical Solar Cells |
title_auth | Photoelectricochemical Solar Cells |
title_exact_search | Photoelectricochemical Solar Cells |
title_full | Photoelectricochemical Solar Cells |
title_fullStr | Photoelectricochemical Solar Cells |
title_full_unstemmed | Photoelectricochemical Solar Cells |
title_short | Photoelectricochemical Solar Cells |
title_sort | photoelectricochemical solar cells |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460008 |
work_keys_str_mv | AT demircisankirnurdan photoelectricochemicalsolarcells AT sankirmehmet photoelectricochemicalsolarcells |