Markov Chains:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2018]
|
Schriftenreihe: | Springer series in operations research and financial engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xviii, 757 Seiten Diagramme |
ISBN: | 9783319977034 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045443599 | ||
003 | DE-604 | ||
005 | 20211022 | ||
007 | t | ||
008 | 190205s2018 |||| |||| 00||| eng d | ||
020 | |a 9783319977034 |c Hardback |9 978-3-319-97703-4 | ||
035 | |a (OCoLC)1085676051 | ||
035 | |a (DE-599)BVBBV045443599 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 |a DE-91G |a DE-83 |a DE-739 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 60J10 |2 msc | ||
084 | |a MAT 607f |2 stub | ||
084 | |a 60J20 |2 msc | ||
100 | 1 | |a Douc, Randal |d 1971- |0 (DE-588)105018629X |4 aut | |
245 | 1 | 0 | |a Markov Chains |c Randal Douc ; Eric Moulines ; Pierre Priouret ; Philippe Soulier |
264 | 1 | |a Cham |b Springer |c [2018] | |
300 | |a xviii, 757 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in operations research and financial engineering | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Distribution (Probability theory | |
650 | 0 | 7 | |a Markov-Kette |0 (DE-588)4037612-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Kette |0 (DE-588)4037612-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Moulines, Eric |d 1963- |0 (DE-588)1050741625 |4 aut | |
700 | 1 | |a Priouret, Pierre |d 1939- |0 (DE-588)173702538 |4 aut | |
700 | 1 | |a Soulier, Philippe |0 (DE-588)1178465055 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-97704-1 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030829087&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030829087 |
Datensatz im Suchindex
_version_ | 1804179337779347456 |
---|---|
adam_text | Contents Part I Foundations 1 Markov Chains: Basic Definitions........................................................... 1.1 Markov Chains................................................................................ 1.2 Kernels.............................................................................................. 1.3 Homogeneous Markov Chains...................................................... 1.4 Invariant Measures and Stationarity............................................... 1.5 Reversibility..................................................................................... 1.6 Markov Kernels on Lf(ī)................................................................ 1.7 Exercises............................................................................................ 1.8 Bibliographical Notes....................................................................... 3 3 6 12 16 18 20 21 25 2 Examples of Markov Chains.................................................................... 2.1 Random Iterative Functions........................................................... 2.2 Observation-Driven Models........................................................... 2.3 Markov Chain Monte Carlo Algorithms ...................................... 2.4 Exercises............................................................................................ 2.5 Bibliographical Notes....................................................................... 27 27 35 38 49 51 3 Stopping Times and the Strong Markov Property............................ 3.1 The Canonical
Chain....................................................................... 3.2 Stopping Times................................................................................ 3.3 The Strong Markov Property......................................................... 3.4 First-Entrance, Last-Exit Decomposition...................................... 3.5 Accessible and Attractive Sets...................................................... 3.6 Return Times and Invariant Measures.......................................... 3.7 Exercises............................................................................................ 3.8 Bibliographical Notes....................................................................... 53 54 58 60 64 66 67 73 74 xiii
4 5 XV Contents Martingales, Harmonic Functions and Poisson-Dirichlet Problems....................................................................................................... 4.1 Harmonic and Superharmonic Functions...................................... 4.2 The Potential Kemel....................................................................... 4.3 The Comparison Theorem............................................................. 4.4 The Dirichlet and Poisson Problems............................................. 4.5 Time-Inhomogeneous Poisson-Dirichlet Problems..................... 4.6 Exercises............................................................................................ 4.7 Bibliographical Notes....................................................................... Ergodic Theory for Markov Chains...................................................... 5.1 Dynamical Systems......................................................................... 5.2 Markov Chain Ergodicity................................................................ 5.3 Exercises............................................................................................ 5.4 Bibliographical Notes....................................................................... Contents 9 75 75 77 81 85 88 89 95 »jtøWtr*· xiv Part II 6 7 8 Irreducible Chains: Basics 11 Splitting Construction and Invariant Measures 11.1 The Splitting Construction............................................................. 11.2 Existence of Invariant Measures....................................................
11.3 Convergence in Total Variation tothe Stationary Distribution....................................................................................... 11.4 Geometric Convergence in Total Variation Distance ................. 11.5 Exercises............................................................................................ 11.6 Bibliographical Notes....................................................................... 1 l.A Another Proof of the Convergenceof Harris Recurrent Kemels.............................................................................................. 241 241 247 Feller and f-Kernete.................................................................................. 12.1 Feller Kernels............................................ 12.2 Г-Kemels ......................................................................................... 12.3 Existence of an Invariant Probability............................................. 12.4 Topological Recurrence.................................................................. 12.5 Exercises............................................................................................ 12.6 Bibliographical Notes....................................................................... 12.A Linear Control Systems................................................................... 265 265 270 274 277 279 285 285 ļ į ·. Atomic Chains............................................................................................ П9 6.1
Atoms................................................................................................. 119 6.2 Recurrence and Transience............................................................. 121 6.3 Period of an Atom........................................................................... 126 6.4 Subinvariant and Invariant Measures............................................. 128 6.5 Independence of the Excursions.................................................... 134 6.6 Ratio Limit Theorems .................................................................... 135 6.7 The Central Limit Theorem........................................................... 137 6.8 Exercises............................................................................................ 140 6.9 Bibliographical Notes....................................................................... 144 Markov Chains on aDiscrete StateSpace.............................................. 7.1 Irreducibility, Recurrence, and Transience................................... 7.2 Invariant Measures, Positive and Null Recurrence..................... 7.3 Communication................................................................................ 7.4 Period................................................................................................. 7.5 Drift Conditions for Recurrence and Transience.......................... 7.6 Convergence to the Invariant Probability...................................... 7.7 Exercises............................................................................................ 7.8
Bibliographical Notes....................................................................... 145 145 146 148 150 151 154 164 Convergence of Atomic MarkovChains................................................. 8.1 Discrete-Time Renewal Theory...................................................... 8.2 Renewal Theory and Atomic Markov Chains............................... 8.3 Coupling Inequalities for Atomic Markov Chains ..................... 8.4 Exercises............................................................................................ 8.5 Bibliographical Notes....................................................................... 165 165 175 180 187 189 159 211 215 215 Transience, Recurrence, and Harris Recurrence 221 10.1 Recurrence and Transience............................................................. 221 10.2 Harris Recurrence........................................................................... 228 10.3 Exercises............................................................................................ 236 10.4 Bibliographical Notes....................................................................... 239 •I įj 191 ^ 194 201 10 97 97 104 Ill 115 Small Sets, Irreducibility, and Aperiodicity 9.1 Small Sets......................................................................................... 9.2 Irreducibility..................................................................................... 9.3 Periodicity and Aperiodicity........................................................... 9.4 Petite
Sets......................................................................................... 9.5 Exercises............................................................................................ 9.6 Bibliographical Notes....................................................................... 9.A Proof of Theorem 9.2.6................................................................... 12 Part III 13 251 253 258 259 259 Irreducible Chains: Advanced Topics Rates 13.1 13.2 13.3 13.4 13.5 13.6 of Convergence for Atomic Markov Chains............................ Subgeometric Sequences.................................................................. Coupling Inequalities for Atomic Markov Chains ..................... Rates of Convergence in Total Variation Distance..................... Rates of Convergence in /-Norm.................................................. Exercises............................................................................................ Bibliographical Notes....................................................................... 289 289 291 303 305 311 312
XVI 14 15 16 17 18 19 Contents Geometric Recurrence and Regularity................................................. 14.1 /-Geometric Recurrence and Drift Conditions............................ 14.2 /-Geometric Regularity.................................................................... 14.3 /֊Geometric Regularity of the Skeletons...................................... 14.4 /-Geometric Regularity of the Split Kernel................................. 14.5 Exercises............................................................................................ 14.6 Bibliographical Notes....................................................................... 313 313 321 327 332 334 337 Geometric Rates of Convergence........................................................... 15.1 Geometric Ergodicity....................................................................... 15.2 V-Uniform Geometric Ergodicity.................................................... 15.3 Uniform Ergodicity......................................................................... 15.4 Exercises............................................................................................ 15.5 Bibliographical Notes....................................................................... 339 339 349 353 356 358 (ƒ, //Recurrence and Regularity........................................................... 361 16.1 (ƒ, /-/Recurrence and Drift Conditions........................................ 361 16.2 (ƒ, //Regularity.............................................................................. 370 16.3 (ƒ, //Regularity of
the Skeletons.................................................. 377 16.4 (ƒ, //Regularity of the Split Kernel............................................. 381 16.5 Exercises............................................................................................ 382 16.6 Bibliographical Notes....................................................................... 383 Subgeometric Rates of Convergence...................................................... 17.1 (ƒ, //Ergodicity.............................................................................. 17.2 Drift Conditions................................................................................ 17.3 Bibliographical Notes....................................................................... 17.A Young Functions............................................................................... 385 385 392 399 399 Uniform and V-Geometric Ergodicity by Operator Methods......... 18.1 The Fixed-Point Theorem................................................................ 18.2 Dobrushin Coefficient and Uniform Ergodicity............................ 18.3 V-Dobrushin Coefficient.................................................................. 18.4 V-Uniformly Geometrically Ergodic Markov Kernel................... 18.5 Application of Uniform Ergodicity to the Existence of an Invariant Measure.................................................................. 18.6 Exercises............................................................................................ 18.7 Bibliographical
Notes....................................................................... 401 401 403 409 412 Coupling for Irreducible Kernels........................................................... 19.1 Coupling............................................................................................ 19.2 The Coupling Inequality.................................................................. 19.3 Distributional, Exact, and Maximal Coupling............................... 19.4 A Coupling Proof of V-Geometric Ergodicity............................ 19.5 A Coupling Proof of Subgeometric Ergodicity............................ 421 422 432 435 441 444 Contents 19.6 19.7 Part IV 20 *vu Exercises............................................................................................ 449 Bibliographical Notes....................................................................... 451 Selected Topics Convergence in the Wasserstein Distance............................................. 20.1 The Wasserstein Distance................................................................ 20.2 Existence and Uniqueness of the Invariant Probability Measure............................................................................................ 20.3 Uniform Convergence in the Wasserstein Distance..................... 20.4 Nonuniform Geometric Convergence............................................. 20.5 Subgeometric Rates of Convergence for the Wasserstein Distance............................................................................................ 20.6
Exercises............................................................................................ 20.7 Bibliographical Notes....................................................................... 20.A Complements on the Wasserstein Distance.................................. 455 456 21 Central Limit Theorems........................................................................... 21.1 Preliminaries..................................................................................... 21.2 The Poisson Equation....................................................................... 21.3 The Resolvent Equation.................................................................. 21.4 A Martingale Coboundary Decomposition................................... 21.5 Exercises............................................................................................ 21.6 Bibliographical Notes....................................................................... 21.A A Covariance Inequality................................................................... 489 490 495 503 508 517 519 520 22 Spectral Theory.......................................................................................... 22.1 Spectrum............................................................................................ 22.2 Geometric and Exponential Convergence in L2(π)..................... 22.3 Lp(u)-Exponential Convergence.................................................... 22.4 Cheeger’s Inequality ..................... 22.5 Variance Bounds for Additive Functionals and the Central Limit Theorem for
Reversible Markov Chains............................ 22.6 Exercises............................................................................................ 22.7 Bibliographical Notes....................................................................... 22.A Operators on Banach and Hilbert Spaces....................................... 22.B Spectral Measure.............................................................................. 523 523 530 538 545 Concentration Inequalities ....................................................................... 23.1 Concentration Inequality for Independent Random Variables............................................................................................ 23.2 Concentration Inequality for Uniformly Ergodic Markov Chains................................................................................................. 23.3 Sub-Gaussian Concentration Inequalities for V-Geometrically Ergodic Markov Chains.................................................................. 575 415 417 419 23 462 465 471 476 480 485 486 553 560 562 563 572 576 581 587
xviii Contents 23.4 Exponential Concentration Inequalities Under Wasserstein Contraction....................................................................................... Exercises............................................................................................ Bibliographical Notes....................................................................... 594 599 601 Appendices............................................................................................................. 603 A Notations........................................................................................................ 605 В Topology, Measure and Probability....................................................... B.l Topology................................................................................................ B.2 Measures................................................................................................ B.3 Probability.............................................................................................. 609 609 612 618 C Weak Convergence....................................................................................... C. 1 Convergence on Locally Compact Metric Spaces........................... C.2 Tightness................................................................................................ 625 625 626 D Total and V-Total Variation Distances................................................... D.l Signed Measures.................................................................................. D.2 Total Variation
Distance..................................................................... D.3 V-Total Variation................................................................................ 629 629 631 635 E Martingales.................................................................................................... E.l Generalized Positive Supermartingales............................................. E.2 Martingales........................................................................................... E.3 Martingale Convergence Theorems................................................... E.4 Central Limit Theorems....................................................................... 637 637 638 639 641 F Mixing Coefficients...................................................................................... F.l Definitions.............................................................................................. F.2 Properties................................................................................................ F.3 Mixing Coefficients of Markov Chains............................................. 645 645 646 653 G Solutions to Selected Exercises................................................................ 657 References............................................................................................................. 733 Index...................................................................................................................... 753 23.5 23.6
|
any_adam_object | 1 |
author | Douc, Randal 1971- Moulines, Eric 1963- Priouret, Pierre 1939- Soulier, Philippe |
author_GND | (DE-588)105018629X (DE-588)1050741625 (DE-588)173702538 (DE-588)1178465055 |
author_facet | Douc, Randal 1971- Moulines, Eric 1963- Priouret, Pierre 1939- Soulier, Philippe |
author_role | aut aut aut aut |
author_sort | Douc, Randal 1971- |
author_variant | r d rd e m em p p pp p s ps |
building | Verbundindex |
bvnumber | BV045443599 |
classification_rvk | SK 820 |
classification_tum | MAT 607f |
ctrlnum | (OCoLC)1085676051 (DE-599)BVBBV045443599 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01800nam a2200445 c 4500</leader><controlfield tag="001">BV045443599</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211022 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">190205s2018 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319977034</subfield><subfield code="c">Hardback</subfield><subfield code="9">978-3-319-97703-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1085676051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045443599</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Douc, Randal</subfield><subfield code="d">1971-</subfield><subfield code="0">(DE-588)105018629X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Markov Chains</subfield><subfield code="c">Randal Douc ; Eric Moulines ; Pierre Priouret ; Philippe Soulier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 757 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in operations research and financial engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moulines, Eric</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)1050741625</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Priouret, Pierre</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)173702538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soulier, Philippe</subfield><subfield code="0">(DE-588)1178465055</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-97704-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030829087&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030829087</subfield></datafield></record></collection> |
id | DE-604.BV045443599 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:18:16Z |
institution | BVB |
isbn | 9783319977034 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030829087 |
oclc_num | 1085676051 |
open_access_boolean | |
owner | DE-188 DE-91G DE-BY-TUM DE-83 DE-739 |
owner_facet | DE-188 DE-91G DE-BY-TUM DE-83 DE-739 |
physical | xviii, 757 Seiten Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series2 | Springer series in operations research and financial engineering |
spelling | Douc, Randal 1971- (DE-588)105018629X aut Markov Chains Randal Douc ; Eric Moulines ; Pierre Priouret ; Philippe Soulier Cham Springer [2018] xviii, 757 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Springer series in operations research and financial engineering Probability Theory and Stochastic Processes Distribution (Probability theory Markov-Kette (DE-588)4037612-6 gnd rswk-swf Markov-Kette (DE-588)4037612-6 s DE-604 Moulines, Eric 1963- (DE-588)1050741625 aut Priouret, Pierre 1939- (DE-588)173702538 aut Soulier, Philippe (DE-588)1178465055 aut Erscheint auch als Online-Ausgabe 978-3-319-97704-1 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030829087&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Douc, Randal 1971- Moulines, Eric 1963- Priouret, Pierre 1939- Soulier, Philippe Markov Chains Probability Theory and Stochastic Processes Distribution (Probability theory Markov-Kette (DE-588)4037612-6 gnd |
subject_GND | (DE-588)4037612-6 |
title | Markov Chains |
title_auth | Markov Chains |
title_exact_search | Markov Chains |
title_full | Markov Chains Randal Douc ; Eric Moulines ; Pierre Priouret ; Philippe Soulier |
title_fullStr | Markov Chains Randal Douc ; Eric Moulines ; Pierre Priouret ; Philippe Soulier |
title_full_unstemmed | Markov Chains Randal Douc ; Eric Moulines ; Pierre Priouret ; Philippe Soulier |
title_short | Markov Chains |
title_sort | markov chains |
topic | Probability Theory and Stochastic Processes Distribution (Probability theory Markov-Kette (DE-588)4037612-6 gnd |
topic_facet | Probability Theory and Stochastic Processes Distribution (Probability theory Markov-Kette |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030829087&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT doucrandal markovchains AT moulineseric markovchains AT priouretpierre markovchains AT soulierphilippe markovchains |