Random matrices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam ; San Diego, CA
Academic Press
2004
|
Ausgabe: | 3rd ed |
Schriftenreihe: | Pure and applied mathematics (Academic Press)
142 |
Schlagworte: | |
Beschreibung: | Title from e-book title screen (viewed Nov. 15, 2007) |
Beschreibung: | 1 online resource (xviii, 688 pages illustrations) |
ISBN: | 008047411X 9780080474113 9780120884094 0120884097 9780125660501 0125660502 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045343100 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181206s2004 |||| o||u| ||||||eng d | ||
020 | |a 008047411X |9 0-08-047411-X | ||
020 | |a 9780080474113 |9 978-0-08-047411-3 | ||
020 | |a 9780120884094 |9 978-0-12-088409-4 | ||
020 | |a 0120884097 |9 0-12-088409-7 | ||
020 | |a 9780125660501 |9 978-0-12-566050-1 | ||
020 | |a 0125660502 |9 0-12-566050-2 | ||
035 | |a (ZDB-4-ENC)ocn317384419 | ||
035 | |a (OCoLC)317384419 | ||
035 | |a (DE-599)BVBBV045343100 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 512.9434 |2 22 | |
100 | 1 | |a Mehta, M. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random matrices |c Madan Lal Mehta |
250 | |a 3rd ed | ||
264 | 1 | |a Amsterdam ; San Diego, CA |b Academic Press |c 2004 | |
300 | |a 1 online resource (xviii, 688 pages |b illustrations) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (Academic Press) |v 142 | |
500 | |a Title from e-book title screen (viewed Nov. 15, 2007) | ||
505 | 8 | |a This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants | |
650 | 4 | |a Matrices aleatoires | |
650 | 7 | |a MATHEMATICS / Matrices |2 bisacsh | |
650 | 7 | |a Random matrices |2 fast | |
650 | 7 | |a Mecanica estatistica |2 larpcal | |
650 | 4 | |a Random matrices | |
650 | 0 | 7 | |a Stochastische Matrix |0 (DE-588)4057624-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieniveau |0 (DE-588)4152225-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Matrix |0 (DE-588)4057624-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Energieniveau |0 (DE-588)4152225-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Mehta, M.L. |t Random matrices |b 3rd ed |d Amsterdam ; San Diego, CA : Elsevier/Academic Press, 2004 |z 0120884097 |z 9780120884094 |
912 | |a ZDB-4-ENC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030729804 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804179161551470592 |
---|---|
any_adam_object | |
author | Mehta, M. L. |
author_facet | Mehta, M. L. |
author_role | aut |
author_sort | Mehta, M. L. |
author_variant | m l m ml mlm |
building | Verbundindex |
bvnumber | BV045343100 |
collection | ZDB-4-ENC |
contents | This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants |
ctrlnum | (ZDB-4-ENC)ocn317384419 (OCoLC)317384419 (DE-599)BVBBV045343100 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3rd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04028nmm a2200649zcb4500</leader><controlfield tag="001">BV045343100</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">008047411X</subfield><subfield code="9">0-08-047411-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080474113</subfield><subfield code="9">978-0-08-047411-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120884094</subfield><subfield code="9">978-0-12-088409-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120884097</subfield><subfield code="9">0-12-088409-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125660501</subfield><subfield code="9">978-0-12-566050-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0125660502</subfield><subfield code="9">0-12-566050-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn317384419</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)317384419</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045343100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mehta, M. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random matrices</subfield><subfield code="c">Madan Lal Mehta</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; San Diego, CA</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 688 pages</subfield><subfield code="b">illustrations)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (Academic Press)</subfield><subfield code="v">142</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from e-book title screen (viewed Nov. 15, 2007)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices aleatoires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Matrices</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mecanica estatistica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieniveau</subfield><subfield code="0">(DE-588)4152225-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Energieniveau</subfield><subfield code="0">(DE-588)4152225-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Mehta, M.L.</subfield><subfield code="t">Random matrices</subfield><subfield code="b">3rd ed</subfield><subfield code="d">Amsterdam ; San Diego, CA : Elsevier/Academic Press, 2004</subfield><subfield code="z">0120884097</subfield><subfield code="z">9780120884094</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030729804</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045343100 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:15:28Z |
institution | BVB |
isbn | 008047411X 9780080474113 9780120884094 0120884097 9780125660501 0125660502 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030729804 |
oclc_num | 317384419 |
open_access_boolean | |
physical | 1 online resource (xviii, 688 pages illustrations) |
psigel | ZDB-4-ENC |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Academic Press |
record_format | marc |
series2 | Pure and applied mathematics (Academic Press) |
spelling | Mehta, M. L. Verfasser aut Random matrices Madan Lal Mehta 3rd ed Amsterdam ; San Diego, CA Academic Press 2004 1 online resource (xviii, 688 pages illustrations) txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (Academic Press) 142 Title from e-book title screen (viewed Nov. 15, 2007) This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants Matrices aleatoires MATHEMATICS / Matrices bisacsh Random matrices fast Mecanica estatistica larpcal Random matrices Stochastische Matrix (DE-588)4057624-3 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Energieniveau (DE-588)4152225-4 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 s 1\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 Energieniveau (DE-588)4152225-4 s 3\p DE-604 Quantenmechanik (DE-588)4047989-4 s 4\p DE-604 Erscheint auch als Druck-Ausgabe Mehta, M.L. Random matrices 3rd ed Amsterdam ; San Diego, CA : Elsevier/Academic Press, 2004 0120884097 9780120884094 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mehta, M. L. Random matrices This book gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlev equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants Matrices aleatoires MATHEMATICS / Matrices bisacsh Random matrices fast Mecanica estatistica larpcal Random matrices Stochastische Matrix (DE-588)4057624-3 gnd Quantenmechanik (DE-588)4047989-4 gnd Energieniveau (DE-588)4152225-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
subject_GND | (DE-588)4057624-3 (DE-588)4047989-4 (DE-588)4152225-4 (DE-588)4064324-4 |
title | Random matrices |
title_auth | Random matrices |
title_exact_search | Random matrices |
title_full | Random matrices Madan Lal Mehta |
title_fullStr | Random matrices Madan Lal Mehta |
title_full_unstemmed | Random matrices Madan Lal Mehta |
title_short | Random matrices |
title_sort | random matrices |
topic | Matrices aleatoires MATHEMATICS / Matrices bisacsh Random matrices fast Mecanica estatistica larpcal Random matrices Stochastische Matrix (DE-588)4057624-3 gnd Quantenmechanik (DE-588)4047989-4 gnd Energieniveau (DE-588)4152225-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
topic_facet | Matrices aleatoires MATHEMATICS / Matrices Random matrices Mecanica estatistica Stochastische Matrix Quantenmechanik Energieniveau Wahrscheinlichkeitsrechnung |
work_keys_str_mv | AT mehtaml randommatrices |