Induced representations of locally compact groups:
"Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York
Cambridge University Press
2013
|
Schlagworte: | |
Zusammenfassung: | "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- |
Beschreibung: | xiii, 343 p. ill |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045253485 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181026s2013 |||| o||u| ||||||eng d | ||
035 | |a (ZDB-30-PAD)EBC1057465 | ||
035 | |a (ZDB-89-EBL)EBL1057465 | ||
035 | |a (ZDB-38-EBR)ebr10621697 | ||
035 | |a (OCoLC)818882941 | ||
035 | |a (DE-599)BVBBV045253485 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 512/.25 |2 23 | |
100 | 1 | |a Kaniuth, Eberhard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Induced representations of locally compact groups |c Eberhard Kaniuth, Keith F. Taylor |
264 | 1 | |a Cambridge ; New York |b Cambridge University Press |c 2013 | |
300 | |a xiii, 343 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- | ||
650 | 4 | |a Locally compact groups | |
650 | 4 | |a Topological spaces | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologischer Raum |0 (DE-588)4137586-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 2 | |a Topologischer Raum |0 (DE-588)4137586-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Taylor, Keith F. |d 1950- |e Sonstige |4 oth | |
710 | 2 | |a ProQuest (Firm) |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030641461 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804178999710056448 |
---|---|
any_adam_object | |
author | Kaniuth, Eberhard |
author_facet | Kaniuth, Eberhard |
author_role | aut |
author_sort | Kaniuth, Eberhard |
author_variant | e k ek |
building | Verbundindex |
bvnumber | BV045253485 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC1057465 (ZDB-89-EBL)EBL1057465 (ZDB-38-EBR)ebr10621697 (OCoLC)818882941 (DE-599)BVBBV045253485 |
dewey-full | 512/.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.25 |
dewey-search | 512/.25 |
dewey-sort | 3512 225 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02965nmm a2200469zc 4500</leader><controlfield tag="001">BV045253485</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181026s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC1057465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1057465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10621697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818882941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045253485</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.25</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaniuth, Eberhard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Induced representations of locally compact groups</subfield><subfield code="c">Eberhard Kaniuth, Keith F. Taylor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 343 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Locally compact groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Keith F.</subfield><subfield code="d">1950-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030641461</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV045253485 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:12:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030641461 |
oclc_num | 818882941 |
open_access_boolean | |
physical | xiii, 343 p. ill |
psigel | ZDB-30-PAD |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Kaniuth, Eberhard Verfasser aut Induced representations of locally compact groups Eberhard Kaniuth, Keith F. Taylor Cambridge ; New York Cambridge University Press 2013 xiii, 343 p. ill txt rdacontent c rdamedia cr rdacarrier "Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"-- Locally compact groups Topological spaces Representations of groups Mathematical analysis Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Topologischer Raum (DE-588)4137586-5 gnd rswk-swf Lokal kompakte Gruppe (DE-588)4168094-7 gnd rswk-swf Lokal kompakte Gruppe (DE-588)4168094-7 s Darstellungstheorie (DE-588)4148816-7 s Topologischer Raum (DE-588)4137586-5 s 1\p DE-604 Taylor, Keith F. 1950- Sonstige oth ProQuest (Firm) Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kaniuth, Eberhard Induced representations of locally compact groups Locally compact groups Topological spaces Representations of groups Mathematical analysis Darstellungstheorie (DE-588)4148816-7 gnd Topologischer Raum (DE-588)4137586-5 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4137586-5 (DE-588)4168094-7 |
title | Induced representations of locally compact groups |
title_auth | Induced representations of locally compact groups |
title_exact_search | Induced representations of locally compact groups |
title_full | Induced representations of locally compact groups Eberhard Kaniuth, Keith F. Taylor |
title_fullStr | Induced representations of locally compact groups Eberhard Kaniuth, Keith F. Taylor |
title_full_unstemmed | Induced representations of locally compact groups Eberhard Kaniuth, Keith F. Taylor |
title_short | Induced representations of locally compact groups |
title_sort | induced representations of locally compact groups |
topic | Locally compact groups Topological spaces Representations of groups Mathematical analysis Darstellungstheorie (DE-588)4148816-7 gnd Topologischer Raum (DE-588)4137586-5 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd |
topic_facet | Locally compact groups Topological spaces Representations of groups Mathematical analysis Darstellungstheorie Topologischer Raum Lokal kompakte Gruppe |
work_keys_str_mv | AT kaniutheberhard inducedrepresentationsoflocallycompactgroups AT taylorkeithf inducedrepresentationsoflocallycompactgroups AT proquestfirm inducedrepresentationsoflocallycompactgroups |