Exponential random graph models for social networks: theories, methods, and applications
"Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciproc...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2013
|
Schlagworte: | |
Zusammenfassung: | "Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciprocated ties and triangles. A social network can be thought of as being built up of these local patterns of ties, called network configurations xe "network configurations" , which correspond to the parameters in the model. Moreover, these configurations can be considered to arise from local social processes, whereby actors in the network form connections in response to other ties in their social environment. ERGMs are a principled statistical approach to modeling social networks. They are theory-driven in that their use requires the researcher to consider the complex, intersecting and indeed potentially competing theoretical reasons why the social ties in the observed network have arisen. For instance, does a given network structure occur due to processes of homophily xe "actor-relation effects:homophily" , xe "homophily" \t "see actor-relation effects" reciprocity xe "reciprocity" , transitivity xe "transitivity" , or indeed a combination of these? By including such parameters together in the one model a researcher can test these effects one against the other, and so infer the social processes that have built the network. Being a statistical model, an ERGM permits inferences about whether, in our network of interest, there are significantly more (or fewer) reciprocated ties, or triangles (for instance), than we would expect"-- |
Beschreibung: | xxii, 336 p. ill |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045253478 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181026s2013 |||| o||u| ||||||eng d | ||
035 | |a (ZDB-30-PAD)EBC1057451 | ||
035 | |a (ZDB-89-EBL)EBL1057451 | ||
035 | |a (ZDB-38-EBR)ebr10628063 | ||
035 | |a (OCoLC)818882894 | ||
035 | |a (DE-599)BVBBV045253478 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 302.3 |2 23 | |
245 | 1 | 0 | |a Exponential random graph models for social networks |b theories, methods, and applications |c editors, Dean Lusher, Johan Koskinen, Garry Robbins |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2013 | |
300 | |a xxii, 336 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciprocated ties and triangles. A social network can be thought of as being built up of these local patterns of ties, called network configurations xe "network configurations" , which correspond to the parameters in the model. Moreover, these configurations can be considered to arise from local social processes, whereby actors in the network form connections in response to other ties in their social environment. ERGMs are a principled statistical approach to modeling social networks. They are theory-driven in that their use requires the researcher to consider the complex, intersecting and indeed potentially competing theoretical reasons why the social ties in the observed network have arisen. For instance, does a given network structure occur due to processes of homophily xe "actor-relation effects:homophily" , xe "homophily" \t "see actor-relation effects" reciprocity xe "reciprocity" , transitivity xe "transitivity" , or indeed a combination of these? By including such parameters together in the one model a researcher can test these effects one against the other, and so infer the social processes that have built the network. Being a statistical model, an ERGM permits inferences about whether, in our network of interest, there are significantly more (or fewer) reciprocated ties, or triangles (for instance), than we would expect"-- | ||
650 | 4 | |a Social networks |x Mathematical models | |
650 | 4 | |a Social networks |x Research |x Graphic methods | |
650 | 0 | 7 | |a Graphentheoretisches Modell |0 (DE-588)4158055-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Netzwerkanalyse |g Soziologie |0 (DE-588)4205975-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Netzwerkanalyse |g Soziologie |0 (DE-588)4205975-6 |D s |
689 | 0 | 1 | |a Graphentheoretisches Modell |0 (DE-588)4158055-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Lusher, Dean |e Sonstige |4 oth | |
700 | 1 | |a Koskinen, Johan |e Sonstige |4 oth | |
700 | 1 | |a Robbins, Garry |e Sonstige |4 oth | |
710 | 2 | |a ProQuest (Firm) |e Sonstige |4 oth | |
912 | |a ZDB-30-PAD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030641454 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804178999703764992 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV045253478 |
collection | ZDB-30-PAD |
ctrlnum | (ZDB-30-PAD)EBC1057451 (ZDB-89-EBL)EBL1057451 (ZDB-38-EBR)ebr10628063 (OCoLC)818882894 (DE-599)BVBBV045253478 |
dewey-full | 302.3 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 302 - Social interaction |
dewey-raw | 302.3 |
dewey-search | 302.3 |
dewey-sort | 3302.3 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03381nmm a2200457zc 4500</leader><controlfield tag="001">BV045253478</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181026s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC1057451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1057451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10628063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818882894</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045253478</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">302.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exponential random graph models for social networks</subfield><subfield code="b">theories, methods, and applications</subfield><subfield code="c">editors, Dean Lusher, Johan Koskinen, Garry Robbins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 336 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciprocated ties and triangles. A social network can be thought of as being built up of these local patterns of ties, called network configurations xe "network configurations" , which correspond to the parameters in the model. Moreover, these configurations can be considered to arise from local social processes, whereby actors in the network form connections in response to other ties in their social environment. ERGMs are a principled statistical approach to modeling social networks. They are theory-driven in that their use requires the researcher to consider the complex, intersecting and indeed potentially competing theoretical reasons why the social ties in the observed network have arisen. For instance, does a given network structure occur due to processes of homophily xe "actor-relation effects:homophily" , xe "homophily" \t "see actor-relation effects" reciprocity xe "reciprocity" , transitivity xe "transitivity" , or indeed a combination of these? By including such parameters together in the one model a researcher can test these effects one against the other, and so infer the social processes that have built the network. Being a statistical model, an ERGM permits inferences about whether, in our network of interest, there are significantly more (or fewer) reciprocated ties, or triangles (for instance), than we would expect"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social networks</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social networks</subfield><subfield code="x">Research</subfield><subfield code="x">Graphic methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheoretisches Modell</subfield><subfield code="0">(DE-588)4158055-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzwerkanalyse</subfield><subfield code="g">Soziologie</subfield><subfield code="0">(DE-588)4205975-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Netzwerkanalyse</subfield><subfield code="g">Soziologie</subfield><subfield code="0">(DE-588)4205975-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheoretisches Modell</subfield><subfield code="0">(DE-588)4158055-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lusher, Dean</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koskinen, Johan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robbins, Garry</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030641454</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV045253478 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:12:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030641454 |
oclc_num | 818882894 |
open_access_boolean | |
physical | xxii, 336 p. ill |
psigel | ZDB-30-PAD |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Exponential random graph models for social networks theories, methods, and applications editors, Dean Lusher, Johan Koskinen, Garry Robbins Cambridge Cambridge University Press 2013 xxii, 336 p. ill txt rdacontent c rdamedia cr rdacarrier "Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciprocated ties and triangles. A social network can be thought of as being built up of these local patterns of ties, called network configurations xe "network configurations" , which correspond to the parameters in the model. Moreover, these configurations can be considered to arise from local social processes, whereby actors in the network form connections in response to other ties in their social environment. ERGMs are a principled statistical approach to modeling social networks. They are theory-driven in that their use requires the researcher to consider the complex, intersecting and indeed potentially competing theoretical reasons why the social ties in the observed network have arisen. For instance, does a given network structure occur due to processes of homophily xe "actor-relation effects:homophily" , xe "homophily" \t "see actor-relation effects" reciprocity xe "reciprocity" , transitivity xe "transitivity" , or indeed a combination of these? By including such parameters together in the one model a researcher can test these effects one against the other, and so infer the social processes that have built the network. Being a statistical model, an ERGM permits inferences about whether, in our network of interest, there are significantly more (or fewer) reciprocated ties, or triangles (for instance), than we would expect"-- Social networks Mathematical models Social networks Research Graphic methods Graphentheoretisches Modell (DE-588)4158055-2 gnd rswk-swf Netzwerkanalyse Soziologie (DE-588)4205975-6 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Netzwerkanalyse Soziologie (DE-588)4205975-6 s Graphentheoretisches Modell (DE-588)4158055-2 s 2\p DE-604 Lusher, Dean Sonstige oth Koskinen, Johan Sonstige oth Robbins, Garry Sonstige oth ProQuest (Firm) Sonstige oth 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Exponential random graph models for social networks theories, methods, and applications Social networks Mathematical models Social networks Research Graphic methods Graphentheoretisches Modell (DE-588)4158055-2 gnd Netzwerkanalyse Soziologie (DE-588)4205975-6 gnd |
subject_GND | (DE-588)4158055-2 (DE-588)4205975-6 (DE-588)4143413-4 |
title | Exponential random graph models for social networks theories, methods, and applications |
title_auth | Exponential random graph models for social networks theories, methods, and applications |
title_exact_search | Exponential random graph models for social networks theories, methods, and applications |
title_full | Exponential random graph models for social networks theories, methods, and applications editors, Dean Lusher, Johan Koskinen, Garry Robbins |
title_fullStr | Exponential random graph models for social networks theories, methods, and applications editors, Dean Lusher, Johan Koskinen, Garry Robbins |
title_full_unstemmed | Exponential random graph models for social networks theories, methods, and applications editors, Dean Lusher, Johan Koskinen, Garry Robbins |
title_short | Exponential random graph models for social networks |
title_sort | exponential random graph models for social networks theories methods and applications |
title_sub | theories, methods, and applications |
topic | Social networks Mathematical models Social networks Research Graphic methods Graphentheoretisches Modell (DE-588)4158055-2 gnd Netzwerkanalyse Soziologie (DE-588)4205975-6 gnd |
topic_facet | Social networks Mathematical models Social networks Research Graphic methods Graphentheoretisches Modell Netzwerkanalyse Soziologie Aufsatzsammlung |
work_keys_str_mv | AT lusherdean exponentialrandomgraphmodelsforsocialnetworkstheoriesmethodsandapplications AT koskinenjohan exponentialrandomgraphmodelsforsocialnetworkstheoriesmethodsandapplications AT robbinsgarry exponentialrandomgraphmodelsforsocialnetworkstheoriesmethodsandapplications AT proquestfirm exponentialrandomgraphmodelsforsocialnetworkstheoriesmethodsandapplications |