The Best Approximation Method An Introduction:
The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1987
|
Schriftenreihe: | Lecture Notes in Engineering
27 |
Schlagworte: | |
Online-Zugang: | BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but computationally expensive numerical techniques will become attractive to the practicing engineer. This book presents an introduction to a new approximation method based on a generalized Fourier series expansion of a linear operator equation. Because many engineering problems such as the multi dimensional Laplace and Poisson equations, the diffusion equation, and many integral equations are linear operator equations, this new approximation technique will be of interest to practicing engineers. Because a generalized Fourier series is used to develop the approxi mator, a "best approximation" is achieved in the "least-squares" sense; hence the name, the Best Approximation Method. This book guides the reader through several mathematics topics which are pertinent to the development of the theory employed by the Best Approximation Method. Working spaces such as metric spaces and Banach spaces are explained in readable terms. Integration theory in the Lebesque sense is covered carefully. Because the generalized Fourier series utilizes Lebesque integration concepts, the integra tion theory is covered through the topic of converging sequences of functions with respect to measure, in the mean (Lp), almost uniformly IV and almost everywhere. Generalized Fourier theory and linear operator theory are treated in Chapters 3 and 4 |
Beschreibung: | 1 Online-Ressource (XIV, 172 p) |
ISBN: | 9783642830389 |
DOI: | 10.1007/978-3-642-83038-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045188018 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783642830389 |9 978-3-642-83038-9 | ||
024 | 7 | |a 10.1007/978-3-642-83038-9 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-83038-9 | ||
035 | |a (OCoLC)1185234335 | ||
035 | |a (DE-599)BVBBV045188018 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
100 | 1 | |a Hromadka, Theodore V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Best Approximation Method An Introduction |c by Theodore V. Hromadka, Chung-Cheng Yen, George F. Pinder |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1987 | |
300 | |a 1 Online-Ressource (XIV, 172 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Engineering |v 27 | |
520 | |a The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but computationally expensive numerical techniques will become attractive to the practicing engineer. This book presents an introduction to a new approximation method based on a generalized Fourier series expansion of a linear operator equation. Because many engineering problems such as the multi dimensional Laplace and Poisson equations, the diffusion equation, and many integral equations are linear operator equations, this new approximation technique will be of interest to practicing engineers. Because a generalized Fourier series is used to develop the approxi mator, a "best approximation" is achieved in the "least-squares" sense; hence the name, the Best Approximation Method. This book guides the reader through several mathematics topics which are pertinent to the development of the theory employed by the Best Approximation Method. Working spaces such as metric spaces and Banach spaces are explained in readable terms. Integration theory in the Lebesque sense is covered carefully. Because the generalized Fourier series utilizes Lebesque integration concepts, the integra tion theory is covered through the topic of converging sequences of functions with respect to measure, in the mean (Lp), almost uniformly IV and almost everywhere. Generalized Fourier theory and linear operator theory are treated in Chapters 3 and 4 | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Engineering | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Operatorgleichung |0 (DE-588)4043601-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Čebyšev-Raum |0 (DE-588)4147436-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beste Approximation |0 (DE-588)4144932-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Reihe |0 (DE-588)4155109-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fourier-Reihe |0 (DE-588)4155109-6 |D s |
689 | 0 | 1 | |a Operatorgleichung |0 (DE-588)4043601-9 |D s |
689 | 0 | 2 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Beste Approximation |0 (DE-588)4144932-0 |D s |
689 | 1 | 1 | |a Čebyšev-Raum |0 (DE-588)4147436-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Yen, Chung-Cheng |4 aut | |
700 | 1 | |a Pinder, George F. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540175728 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-83038-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030577195 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-83038-9 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178880787906560 |
---|---|
any_adam_object | |
author | Hromadka, Theodore V. Yen, Chung-Cheng Pinder, George F. |
author_facet | Hromadka, Theodore V. Yen, Chung-Cheng Pinder, George F. |
author_role | aut aut aut |
author_sort | Hromadka, Theodore V. |
author_variant | t v h tv tvh c c y ccy g f p gf gfp |
building | Verbundindex |
bvnumber | BV045188018 |
classification_rvk | SK 470 SK 540 SK 910 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-83038-9 (OCoLC)1185234335 (DE-599)BVBBV045188018 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-83038-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04058nmm a2200637zcb4500</leader><controlfield tag="001">BV045188018</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642830389</subfield><subfield code="9">978-3-642-83038-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-83038-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-83038-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185234335</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045188018</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hromadka, Theodore V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Best Approximation Method An Introduction</subfield><subfield code="c">by Theodore V. Hromadka, Chung-Cheng Yen, George F. Pinder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 172 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">27</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but computationally expensive numerical techniques will become attractive to the practicing engineer. This book presents an introduction to a new approximation method based on a generalized Fourier series expansion of a linear operator equation. Because many engineering problems such as the multi dimensional Laplace and Poisson equations, the diffusion equation, and many integral equations are linear operator equations, this new approximation technique will be of interest to practicing engineers. Because a generalized Fourier series is used to develop the approxi mator, a "best approximation" is achieved in the "least-squares" sense; hence the name, the Best Approximation Method. This book guides the reader through several mathematics topics which are pertinent to the development of the theory employed by the Best Approximation Method. Working spaces such as metric spaces and Banach spaces are explained in readable terms. Integration theory in the Lebesque sense is covered carefully. Because the generalized Fourier series utilizes Lebesque integration concepts, the integra tion theory is covered through the topic of converging sequences of functions with respect to measure, in the mean (Lp), almost uniformly IV and almost everywhere. Generalized Fourier theory and linear operator theory are treated in Chapters 3 and 4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Čebyšev-Raum</subfield><subfield code="0">(DE-588)4147436-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Čebyšev-Raum</subfield><subfield code="0">(DE-588)4147436-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yen, Chung-Cheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinder, George F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540175728</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-83038-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030577195</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-83038-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045188018 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:00Z |
institution | BVB |
isbn | 9783642830389 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030577195 |
oclc_num | 1185234335 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIV, 172 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Engineering |
spelling | Hromadka, Theodore V. Verfasser aut The Best Approximation Method An Introduction by Theodore V. Hromadka, Chung-Cheng Yen, George F. Pinder Berlin, Heidelberg Springer Berlin Heidelberg 1987 1 Online-Ressource (XIV, 172 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Engineering 27 The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but computationally expensive numerical techniques will become attractive to the practicing engineer. This book presents an introduction to a new approximation method based on a generalized Fourier series expansion of a linear operator equation. Because many engineering problems such as the multi dimensional Laplace and Poisson equations, the diffusion equation, and many integral equations are linear operator equations, this new approximation technique will be of interest to practicing engineers. Because a generalized Fourier series is used to develop the approxi mator, a "best approximation" is achieved in the "least-squares" sense; hence the name, the Best Approximation Method. This book guides the reader through several mathematics topics which are pertinent to the development of the theory employed by the Best Approximation Method. Working spaces such as metric spaces and Banach spaces are explained in readable terms. Integration theory in the Lebesque sense is covered carefully. Because the generalized Fourier series utilizes Lebesque integration concepts, the integra tion theory is covered through the topic of converging sequences of functions with respect to measure, in the mean (Lp), almost uniformly IV and almost everywhere. Generalized Fourier theory and linear operator theory are treated in Chapters 3 and 4 Engineering Appl.Mathematics/Computational Methods of Engineering Applied mathematics Engineering mathematics Operatorgleichung (DE-588)4043601-9 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Čebyšev-Raum (DE-588)4147436-3 gnd rswk-swf Beste Approximation (DE-588)4144932-0 gnd rswk-swf Fourier-Reihe (DE-588)4155109-6 gnd rswk-swf Fourier-Reihe (DE-588)4155109-6 s Operatorgleichung (DE-588)4043601-9 s Approximationstheorie (DE-588)4120913-8 s DE-604 Beste Approximation (DE-588)4144932-0 s Čebyšev-Raum (DE-588)4147436-3 s Yen, Chung-Cheng aut Pinder, George F. aut Erscheint auch als Druck-Ausgabe 9783540175728 https://doi.org/10.1007/978-3-642-83038-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hromadka, Theodore V. Yen, Chung-Cheng Pinder, George F. The Best Approximation Method An Introduction Engineering Appl.Mathematics/Computational Methods of Engineering Applied mathematics Engineering mathematics Operatorgleichung (DE-588)4043601-9 gnd Approximationstheorie (DE-588)4120913-8 gnd Čebyšev-Raum (DE-588)4147436-3 gnd Beste Approximation (DE-588)4144932-0 gnd Fourier-Reihe (DE-588)4155109-6 gnd |
subject_GND | (DE-588)4043601-9 (DE-588)4120913-8 (DE-588)4147436-3 (DE-588)4144932-0 (DE-588)4155109-6 |
title | The Best Approximation Method An Introduction |
title_auth | The Best Approximation Method An Introduction |
title_exact_search | The Best Approximation Method An Introduction |
title_full | The Best Approximation Method An Introduction by Theodore V. Hromadka, Chung-Cheng Yen, George F. Pinder |
title_fullStr | The Best Approximation Method An Introduction by Theodore V. Hromadka, Chung-Cheng Yen, George F. Pinder |
title_full_unstemmed | The Best Approximation Method An Introduction by Theodore V. Hromadka, Chung-Cheng Yen, George F. Pinder |
title_short | The Best Approximation Method An Introduction |
title_sort | the best approximation method an introduction |
topic | Engineering Appl.Mathematics/Computational Methods of Engineering Applied mathematics Engineering mathematics Operatorgleichung (DE-588)4043601-9 gnd Approximationstheorie (DE-588)4120913-8 gnd Čebyšev-Raum (DE-588)4147436-3 gnd Beste Approximation (DE-588)4144932-0 gnd Fourier-Reihe (DE-588)4155109-6 gnd |
topic_facet | Engineering Appl.Mathematics/Computational Methods of Engineering Applied mathematics Engineering mathematics Operatorgleichung Approximationstheorie Čebyšev-Raum Beste Approximation Fourier-Reihe |
url | https://doi.org/10.1007/978-3-642-83038-9 |
work_keys_str_mv | AT hromadkatheodorev thebestapproximationmethodanintroduction AT yenchungcheng thebestapproximationmethodanintroduction AT pindergeorgef thebestapproximationmethodanintroduction |