Rock Anisotropy and the Theory of Stress Measurements:
Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integ...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1983
|
Schriftenreihe: | Lecture Notes in Engineering
2 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous |
Beschreibung: | 1 Online-Ressource (XVIII, 482 p) |
ISBN: | 9783642820403 |
DOI: | 10.1007/978-3-642-82040-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187720 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1983 |||| o||u| ||||||eng d | ||
020 | |a 9783642820403 |9 978-3-642-82040-3 | ||
024 | 7 | |a 10.1007/978-3-642-82040-3 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-82040-3 | ||
035 | |a (OCoLC)1184434682 | ||
035 | |a (DE-599)BVBBV045187720 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a RB 10126 |0 (DE-625)142220:12625 |2 rvk | ||
084 | |a TZ 9700 |0 (DE-625)145190: |2 rvk | ||
100 | 1 | |a Amadei, Bernard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Rock Anisotropy and the Theory of Stress Measurements |c by Bernard Amadei |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1983 | |
300 | |a 1 Online-Ressource (XVIII, 482 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Engineering |v 2 | |
520 | |a Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Control | |
650 | 4 | |a Geoengineering, Foundations, Hydraulics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Control engineering | |
650 | 4 | |a Robotics | |
650 | 4 | |a Mechatronics | |
650 | 4 | |a Engineering geology | |
650 | 4 | |a Engineering / Geology | |
650 | 4 | |a Foundations | |
650 | 4 | |a Hydraulics | |
650 | 0 | 7 | |a Gebirgsmechanik |0 (DE-588)4126280-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spannung |g Geologie |0 (DE-588)4381340-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Messung |0 (DE-588)4038852-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanische Spannung |0 (DE-588)4134428-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gebirgsmechanik |0 (DE-588)4126280-3 |D s |
689 | 0 | 1 | |a Mechanische Spannung |0 (DE-588)4134428-5 |D s |
689 | 0 | 2 | |a Messung |0 (DE-588)4038852-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gebirgsmechanik |0 (DE-588)4126280-3 |D s |
689 | 1 | 1 | |a Spannung |g Geologie |0 (DE-588)4381340-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540123880 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-82040-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030576898 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-82040-3 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178880178683904 |
---|---|
any_adam_object | |
author | Amadei, Bernard |
author_facet | Amadei, Bernard |
author_role | aut |
author_sort | Amadei, Bernard |
author_variant | b a ba |
building | Verbundindex |
bvnumber | BV045187720 |
classification_rvk | RB 10126 TZ 9700 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-82040-3 (OCoLC)1184434682 (DE-599)BVBBV045187720 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Geologie / Paläontologie Mathematik Geographie |
doi_str_mv | 10.1007/978-3-642-82040-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04256nmm a2200733zcb4500</leader><controlfield tag="001">BV045187720</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642820403</subfield><subfield code="9">978-3-642-82040-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-82040-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-82040-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184434682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187720</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10126</subfield><subfield code="0">(DE-625)142220:12625</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TZ 9700</subfield><subfield code="0">(DE-625)145190:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amadei, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rock Anisotropy and the Theory of Stress Measurements</subfield><subfield code="c">by Bernard Amadei</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 482 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geoengineering, Foundations, Hydraulics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering / Geology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gebirgsmechanik</subfield><subfield code="0">(DE-588)4126280-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spannung</subfield><subfield code="g">Geologie</subfield><subfield code="0">(DE-588)4381340-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Messung</subfield><subfield code="0">(DE-588)4038852-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanische Spannung</subfield><subfield code="0">(DE-588)4134428-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gebirgsmechanik</subfield><subfield code="0">(DE-588)4126280-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mechanische Spannung</subfield><subfield code="0">(DE-588)4134428-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Messung</subfield><subfield code="0">(DE-588)4038852-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gebirgsmechanik</subfield><subfield code="0">(DE-588)4126280-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Spannung</subfield><subfield code="g">Geologie</subfield><subfield code="0">(DE-588)4381340-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540123880</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-82040-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576898</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-82040-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187720 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:11:00Z |
institution | BVB |
isbn | 9783642820403 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576898 |
oclc_num | 1184434682 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XVIII, 482 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Engineering |
spelling | Amadei, Bernard Verfasser aut Rock Anisotropy and the Theory of Stress Measurements by Bernard Amadei Berlin, Heidelberg Springer Berlin Heidelberg 1983 1 Online-Ressource (XVIII, 482 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Engineering 2 Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous Engineering Appl.Mathematics/Computational Methods of Engineering Control, Robotics, Mechatronics Control Geoengineering, Foundations, Hydraulics Applied mathematics Engineering mathematics Control engineering Robotics Mechatronics Engineering geology Engineering / Geology Foundations Hydraulics Gebirgsmechanik (DE-588)4126280-3 gnd rswk-swf Spannung Geologie (DE-588)4381340-9 gnd rswk-swf Messung (DE-588)4038852-9 gnd rswk-swf Mechanische Spannung (DE-588)4134428-5 gnd rswk-swf Gebirgsmechanik (DE-588)4126280-3 s Mechanische Spannung (DE-588)4134428-5 s Messung (DE-588)4038852-9 s 1\p DE-604 Spannung Geologie (DE-588)4381340-9 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9783540123880 https://doi.org/10.1007/978-3-642-82040-3 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Amadei, Bernard Rock Anisotropy and the Theory of Stress Measurements Engineering Appl.Mathematics/Computational Methods of Engineering Control, Robotics, Mechatronics Control Geoengineering, Foundations, Hydraulics Applied mathematics Engineering mathematics Control engineering Robotics Mechatronics Engineering geology Engineering / Geology Foundations Hydraulics Gebirgsmechanik (DE-588)4126280-3 gnd Spannung Geologie (DE-588)4381340-9 gnd Messung (DE-588)4038852-9 gnd Mechanische Spannung (DE-588)4134428-5 gnd |
subject_GND | (DE-588)4126280-3 (DE-588)4381340-9 (DE-588)4038852-9 (DE-588)4134428-5 |
title | Rock Anisotropy and the Theory of Stress Measurements |
title_auth | Rock Anisotropy and the Theory of Stress Measurements |
title_exact_search | Rock Anisotropy and the Theory of Stress Measurements |
title_full | Rock Anisotropy and the Theory of Stress Measurements by Bernard Amadei |
title_fullStr | Rock Anisotropy and the Theory of Stress Measurements by Bernard Amadei |
title_full_unstemmed | Rock Anisotropy and the Theory of Stress Measurements by Bernard Amadei |
title_short | Rock Anisotropy and the Theory of Stress Measurements |
title_sort | rock anisotropy and the theory of stress measurements |
topic | Engineering Appl.Mathematics/Computational Methods of Engineering Control, Robotics, Mechatronics Control Geoengineering, Foundations, Hydraulics Applied mathematics Engineering mathematics Control engineering Robotics Mechatronics Engineering geology Engineering / Geology Foundations Hydraulics Gebirgsmechanik (DE-588)4126280-3 gnd Spannung Geologie (DE-588)4381340-9 gnd Messung (DE-588)4038852-9 gnd Mechanische Spannung (DE-588)4134428-5 gnd |
topic_facet | Engineering Appl.Mathematics/Computational Methods of Engineering Control, Robotics, Mechatronics Control Geoengineering, Foundations, Hydraulics Applied mathematics Engineering mathematics Control engineering Robotics Mechatronics Engineering geology Engineering / Geology Foundations Hydraulics Gebirgsmechanik Spannung Geologie Messung Mechanische Spannung |
url | https://doi.org/10.1007/978-3-642-82040-3 |
work_keys_str_mv | AT amadeibernard rockanisotropyandthetheoryofstressmeasurements |