VLSI — Compatible Implementations for Artificial Neural Networks:
This book introduces several state-of-the-art VLSI implementations of artificial neural networks (ANNs). It reviews various hardware approaches to ANN implementations: analog, digital and pulse-coded. The analog approach is emphasized as the main one taken in the later chapters of the book. The area...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1997
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science, Analog Circuits and Signal Processing
382 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This book introduces several state-of-the-art VLSI implementations of artificial neural networks (ANNs). It reviews various hardware approaches to ANN implementations: analog, digital and pulse-coded. The analog approach is emphasized as the main one taken in the later chapters of the book. The area of VLSI implementation of ANNs has been progressing for the last 15 years, but not at the fast pace originally predicted. Several reasons have contributed to the slow progress, with the main one being that VLSI implementation of ANNs is an interdisciplinaly area where only a few researchers, academics and graduate students are willing to venture. The work of Professors Fakhraie and Smith, presented in this book, is a welcome addition to the state-of-the-art and will greatly benefit researchers and students working in this area. Of particular value is the use of experimental results to backup extensive simulations and in-depth modeling. The introduction of a synapse-MOS device is novel. The book applies the concept to a number of applications and guides the reader through more possible applications for future work. I am confident that the book will benefit a potentially wide readership. M. I. Elmasry University of Waterloo Waterloo, Ontario Canada Preface Neural Networks (NNs), generally defined as parallel networks that employ a large number of simple processing elements to perform computation in a distributed fashion, have attracted a lot of attention in the past fifty years. As the result. many new discoveries have been made |
Beschreibung: | 1 Online-Ressource (XXIX, 194 p) |
ISBN: | 9781461563112 |
DOI: | 10.1007/978-1-4615-6311-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186562 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461563112 |9 978-1-4615-6311-2 | ||
024 | 7 | |a 10.1007/978-1-4615-6311-2 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-6311-2 | ||
035 | |a (OCoLC)1053794369 | ||
035 | |a (DE-599)BVBBV045186562 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.3815 |2 23 | |
100 | 1 | |a Fakhraie, Sied Mehdi |e Verfasser |4 aut | |
245 | 1 | 0 | |a VLSI — Compatible Implementations for Artificial Neural Networks |c by Sied Mehdi Fakhraie, Kenneth Carless Smith |
264 | 1 | |a Boston, MA |b Springer US |c 1997 | |
300 | |a 1 Online-Ressource (XXIX, 194 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science, Analog Circuits and Signal Processing |v 382 | |
520 | |a This book introduces several state-of-the-art VLSI implementations of artificial neural networks (ANNs). It reviews various hardware approaches to ANN implementations: analog, digital and pulse-coded. The analog approach is emphasized as the main one taken in the later chapters of the book. The area of VLSI implementation of ANNs has been progressing for the last 15 years, but not at the fast pace originally predicted. Several reasons have contributed to the slow progress, with the main one being that VLSI implementation of ANNs is an interdisciplinaly area where only a few researchers, academics and graduate students are willing to venture. The work of Professors Fakhraie and Smith, presented in this book, is a welcome addition to the state-of-the-art and will greatly benefit researchers and students working in this area. Of particular value is the use of experimental results to backup extensive simulations and in-depth modeling. The introduction of a synapse-MOS device is novel. The book applies the concept to a number of applications and guides the reader through more possible applications for future work. I am confident that the book will benefit a potentially wide readership. M. I. Elmasry University of Waterloo Waterloo, Ontario Canada Preface Neural Networks (NNs), generally defined as parallel networks that employ a large number of simple processing elements to perform computation in a distributed fashion, have attracted a lot of attention in the past fifty years. As the result. many new discoveries have been made | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Circuits and Systems | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Engineering | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Electrical engineering | |
650 | 4 | |a Electronic circuits | |
650 | 0 | 7 | |a VLSI |0 (DE-588)4117388-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a VLSI |0 (DE-588)4117388-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Smith, Kenneth Carless |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461378976 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-6311-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575739 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4615-6311-2 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178877704044544 |
---|---|
any_adam_object | |
author | Fakhraie, Sied Mehdi Smith, Kenneth Carless |
author_facet | Fakhraie, Sied Mehdi Smith, Kenneth Carless |
author_role | aut aut |
author_sort | Fakhraie, Sied Mehdi |
author_variant | s m f sm smf k c s kc kcs |
building | Verbundindex |
bvnumber | BV045186562 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-6311-2 (OCoLC)1053794369 (DE-599)BVBBV045186562 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4615-6311-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03680nmm a2200565zcb4500</leader><controlfield tag="001">BV045186562</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461563112</subfield><subfield code="9">978-1-4615-6311-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-6311-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-6311-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053794369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186562</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fakhraie, Sied Mehdi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">VLSI — Compatible Implementations for Artificial Neural Networks</subfield><subfield code="c">by Sied Mehdi Fakhraie, Kenneth Carless Smith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIX, 194 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science, Analog Circuits and Signal Processing</subfield><subfield code="v">382</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces several state-of-the-art VLSI implementations of artificial neural networks (ANNs). It reviews various hardware approaches to ANN implementations: analog, digital and pulse-coded. The analog approach is emphasized as the main one taken in the later chapters of the book. The area of VLSI implementation of ANNs has been progressing for the last 15 years, but not at the fast pace originally predicted. Several reasons have contributed to the slow progress, with the main one being that VLSI implementation of ANNs is an interdisciplinaly area where only a few researchers, academics and graduate students are willing to venture. The work of Professors Fakhraie and Smith, presented in this book, is a welcome addition to the state-of-the-art and will greatly benefit researchers and students working in this area. Of particular value is the use of experimental results to backup extensive simulations and in-depth modeling. The introduction of a synapse-MOS device is novel. The book applies the concept to a number of applications and guides the reader through more possible applications for future work. I am confident that the book will benefit a potentially wide readership. M. I. Elmasry University of Waterloo Waterloo, Ontario Canada Preface Neural Networks (NNs), generally defined as parallel networks that employ a large number of simple processing elements to perform computation in a distributed fashion, have attracted a lot of attention in the past fifty years. As the result. many new discoveries have been made</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits and Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuits</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">VLSI</subfield><subfield code="0">(DE-588)4117388-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">VLSI</subfield><subfield code="0">(DE-588)4117388-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Kenneth Carless</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461378976</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-6311-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575739</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-6311-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186562 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:57Z |
institution | BVB |
isbn | 9781461563112 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575739 |
oclc_num | 1053794369 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XXIX, 194 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science, Analog Circuits and Signal Processing |
spelling | Fakhraie, Sied Mehdi Verfasser aut VLSI — Compatible Implementations for Artificial Neural Networks by Sied Mehdi Fakhraie, Kenneth Carless Smith Boston, MA Springer US 1997 1 Online-Ressource (XXIX, 194 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science, Analog Circuits and Signal Processing 382 This book introduces several state-of-the-art VLSI implementations of artificial neural networks (ANNs). It reviews various hardware approaches to ANN implementations: analog, digital and pulse-coded. The analog approach is emphasized as the main one taken in the later chapters of the book. The area of VLSI implementation of ANNs has been progressing for the last 15 years, but not at the fast pace originally predicted. Several reasons have contributed to the slow progress, with the main one being that VLSI implementation of ANNs is an interdisciplinaly area where only a few researchers, academics and graduate students are willing to venture. The work of Professors Fakhraie and Smith, presented in this book, is a welcome addition to the state-of-the-art and will greatly benefit researchers and students working in this area. Of particular value is the use of experimental results to backup extensive simulations and in-depth modeling. The introduction of a synapse-MOS device is novel. The book applies the concept to a number of applications and guides the reader through more possible applications for future work. I am confident that the book will benefit a potentially wide readership. M. I. Elmasry University of Waterloo Waterloo, Ontario Canada Preface Neural Networks (NNs), generally defined as parallel networks that employ a large number of simple processing elements to perform computation in a distributed fashion, have attracted a lot of attention in the past fifty years. As the result. many new discoveries have been made Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits VLSI (DE-588)4117388-0 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s VLSI (DE-588)4117388-0 s 1\p DE-604 Smith, Kenneth Carless aut Erscheint auch als Druck-Ausgabe 9781461378976 https://doi.org/10.1007/978-1-4615-6311-2 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fakhraie, Sied Mehdi Smith, Kenneth Carless VLSI — Compatible Implementations for Artificial Neural Networks Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits VLSI (DE-588)4117388-0 gnd Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4117388-0 (DE-588)4226127-2 |
title | VLSI — Compatible Implementations for Artificial Neural Networks |
title_auth | VLSI — Compatible Implementations for Artificial Neural Networks |
title_exact_search | VLSI — Compatible Implementations for Artificial Neural Networks |
title_full | VLSI — Compatible Implementations for Artificial Neural Networks by Sied Mehdi Fakhraie, Kenneth Carless Smith |
title_fullStr | VLSI — Compatible Implementations for Artificial Neural Networks by Sied Mehdi Fakhraie, Kenneth Carless Smith |
title_full_unstemmed | VLSI — Compatible Implementations for Artificial Neural Networks by Sied Mehdi Fakhraie, Kenneth Carless Smith |
title_short | VLSI — Compatible Implementations for Artificial Neural Networks |
title_sort | vlsi compatible implementations for artificial neural networks |
topic | Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits VLSI (DE-588)4117388-0 gnd Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Engineering Circuits and Systems Electrical Engineering Statistical Physics, Dynamical Systems and Complexity Statistical physics Dynamical systems Electrical engineering Electronic circuits VLSI Neuronales Netz |
url | https://doi.org/10.1007/978-1-4615-6311-2 |
work_keys_str_mv | AT fakhraiesiedmehdi vlsicompatibleimplementationsforartificialneuralnetworks AT smithkennethcarless vlsicompatibleimplementationsforartificialneuralnetworks |