Advances in the Complex Variable Boundary Element Method:
Since its inception by Hromadka and Guymon in 1983, the Complex Variable Boundary Element Method or CVBEM has been the subject of several theoretical adventures as well as numerous exciting applications. The CVBEM is a numerical application of the Cauchy Integral theorem (well-known to students of c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
1998
|
Schlagworte: | |
Online-Zugang: | DE-634 URL des Erstveröffentlichers |
Zusammenfassung: | Since its inception by Hromadka and Guymon in 1983, the Complex Variable Boundary Element Method or CVBEM has been the subject of several theoretical adventures as well as numerous exciting applications. The CVBEM is a numerical application of the Cauchy Integral theorem (well-known to students of complex variables) to two-dimensional potential problems involving the Laplace or Poisson equations. Because the numerical application is analytic, the approximation exactly solves the Laplace equation. This attribute of the CVBEM is a distinct advantage over other numerical techniques that develop only an inexact approximation of the Laplace equation. In this book, several of the advances in CVBEM technology, that have evolved since 1983, are assembled according to primary topics including theoretical developments, applications, and CVBEM modeling error analysis. The book is self-contained on a chapter basis so that the reader can go to the chapter of interest rather than necessarily reading the entire prior material. Most of the applications presented in this book are based on the computer programs listed in the prior CVBEM book published by Springer-Verlag (Hromadka and Lai, 1987) and so are not republished here |
Beschreibung: | 1 Online-Ressource (XIV, 390 p) |
ISBN: | 9781447136118 |
DOI: | 10.1007/978-1-4471-3611-8 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045186356 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1998 xx o|||| 00||| eng d | ||
020 | |a 9781447136118 |9 978-1-4471-3611-8 | ||
024 | 7 | |a 10.1007/978-1-4471-3611-8 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4471-3611-8 | ||
035 | |a (OCoLC)1184486995 | ||
035 | |a (DE-599)BVBBV045186356 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
100 | 1 | |a Hromadka, Theodore V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advances in the Complex Variable Boundary Element Method |c by Theodore V. Hromadka, Robert J. Whitley |
264 | 1 | |a London |b Springer London |c 1998 | |
300 | |a 1 Online-Ressource (XIV, 390 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Since its inception by Hromadka and Guymon in 1983, the Complex Variable Boundary Element Method or CVBEM has been the subject of several theoretical adventures as well as numerous exciting applications. The CVBEM is a numerical application of the Cauchy Integral theorem (well-known to students of complex variables) to two-dimensional potential problems involving the Laplace or Poisson equations. Because the numerical application is analytic, the approximation exactly solves the Laplace equation. This attribute of the CVBEM is a distinct advantage over other numerical techniques that develop only an inexact approximation of the Laplace equation. In this book, several of the advances in CVBEM technology, that have evolved since 1983, are assembled according to primary topics including theoretical developments, applications, and CVBEM modeling error analysis. The book is self-contained on a chapter basis so that the reader can go to the chapter of interest rather than necessarily reading the entire prior material. Most of the applications presented in this book are based on the computer programs listed in the prior CVBEM book published by Springer-Verlag (Hromadka and Lai, 1987) and so are not republished here | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Physics | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Integralgleichung |0 (DE-588)4027229-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randelemente-Methode |0 (DE-588)4076508-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Variable |0 (DE-588)4164905-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Randelemente-Methode |0 (DE-588)4076508-8 |D s |
689 | 0 | 1 | |a Komplexe Variable |0 (DE-588)4164905-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Whitley, Robert J. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781849969970 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-3611-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030575533 | |
966 | e | |u https://doi.org/10.1007/978-1-4471-3611-8 |l DE-634 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1822663821894877184 |
---|---|
adam_text | |
any_adam_object | |
author | Hromadka, Theodore V. Whitley, Robert J. |
author_facet | Hromadka, Theodore V. Whitley, Robert J. |
author_role | aut aut |
author_sort | Hromadka, Theodore V. |
author_variant | t v h tv tvh r j w rj rjw |
building | Verbundindex |
bvnumber | BV045186356 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4471-3611-8 (OCoLC)1184486995 (DE-599)BVBBV045186356 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-3611-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV045186356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447136118</subfield><subfield code="9">978-1-4471-3611-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-3611-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4471-3611-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184486995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186356</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hromadka, Theodore V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in the Complex Variable Boundary Element Method</subfield><subfield code="c">by Theodore V. Hromadka, Robert J. Whitley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 390 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since its inception by Hromadka and Guymon in 1983, the Complex Variable Boundary Element Method or CVBEM has been the subject of several theoretical adventures as well as numerous exciting applications. The CVBEM is a numerical application of the Cauchy Integral theorem (well-known to students of complex variables) to two-dimensional potential problems involving the Laplace or Poisson equations. Because the numerical application is analytic, the approximation exactly solves the Laplace equation. This attribute of the CVBEM is a distinct advantage over other numerical techniques that develop only an inexact approximation of the Laplace equation. In this book, several of the advances in CVBEM technology, that have evolved since 1983, are assembled according to primary topics including theoretical developments, applications, and CVBEM modeling error analysis. The book is self-contained on a chapter basis so that the reader can go to the chapter of interest rather than necessarily reading the entire prior material. Most of the applications presented in this book are based on the computer programs listed in the prior CVBEM book published by Springer-Verlag (Hromadka and Lai, 1987) and so are not republished here</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whitley, Robert J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781849969970</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-3611-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575533</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-3611-8</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186356 |
illustrated | Not Illustrated |
indexdate | 2025-01-30T09:01:13Z |
institution | BVB |
isbn | 9781447136118 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575533 |
oclc_num | 1184486995 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIV, 390 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer London |
record_format | marc |
spelling | Hromadka, Theodore V. Verfasser aut Advances in the Complex Variable Boundary Element Method by Theodore V. Hromadka, Robert J. Whitley London Springer London 1998 1 Online-Ressource (XIV, 390 p) txt rdacontent c rdamedia cr rdacarrier Since its inception by Hromadka and Guymon in 1983, the Complex Variable Boundary Element Method or CVBEM has been the subject of several theoretical adventures as well as numerous exciting applications. The CVBEM is a numerical application of the Cauchy Integral theorem (well-known to students of complex variables) to two-dimensional potential problems involving the Laplace or Poisson equations. Because the numerical application is analytic, the approximation exactly solves the Laplace equation. This attribute of the CVBEM is a distinct advantage over other numerical techniques that develop only an inexact approximation of the Laplace equation. In this book, several of the advances in CVBEM technology, that have evolved since 1983, are assembled according to primary topics including theoretical developments, applications, and CVBEM modeling error analysis. The book is self-contained on a chapter basis so that the reader can go to the chapter of interest rather than necessarily reading the entire prior material. Most of the applications presented in this book are based on the computer programs listed in the prior CVBEM book published by Springer-Verlag (Hromadka and Lai, 1987) and so are not republished here Engineering Appl.Mathematics/Computational Methods of Engineering Theoretical, Mathematical and Computational Physics Physics Applied mathematics Engineering mathematics Integralgleichung (DE-588)4027229-1 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Grenzwertberechnung (DE-588)4158161-1 gnd rswk-swf Randelemente-Methode (DE-588)4076508-8 gnd rswk-swf Komplexe Variable (DE-588)4164905-9 gnd rswk-swf Randelemente-Methode (DE-588)4076508-8 s Komplexe Variable (DE-588)4164905-9 s 1\p DE-604 Approximation (DE-588)4002498-2 s 2\p DE-604 Grenzwertberechnung (DE-588)4158161-1 s 3\p DE-604 Integralgleichung (DE-588)4027229-1 s 4\p DE-604 Whitley, Robert J. aut Erscheint auch als Druck-Ausgabe 9781849969970 https://doi.org/10.1007/978-1-4471-3611-8 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hromadka, Theodore V. Whitley, Robert J. Advances in the Complex Variable Boundary Element Method Engineering Appl.Mathematics/Computational Methods of Engineering Theoretical, Mathematical and Computational Physics Physics Applied mathematics Engineering mathematics Integralgleichung (DE-588)4027229-1 gnd Approximation (DE-588)4002498-2 gnd Grenzwertberechnung (DE-588)4158161-1 gnd Randelemente-Methode (DE-588)4076508-8 gnd Komplexe Variable (DE-588)4164905-9 gnd |
subject_GND | (DE-588)4027229-1 (DE-588)4002498-2 (DE-588)4158161-1 (DE-588)4076508-8 (DE-588)4164905-9 |
title | Advances in the Complex Variable Boundary Element Method |
title_auth | Advances in the Complex Variable Boundary Element Method |
title_exact_search | Advances in the Complex Variable Boundary Element Method |
title_full | Advances in the Complex Variable Boundary Element Method by Theodore V. Hromadka, Robert J. Whitley |
title_fullStr | Advances in the Complex Variable Boundary Element Method by Theodore V. Hromadka, Robert J. Whitley |
title_full_unstemmed | Advances in the Complex Variable Boundary Element Method by Theodore V. Hromadka, Robert J. Whitley |
title_short | Advances in the Complex Variable Boundary Element Method |
title_sort | advances in the complex variable boundary element method |
topic | Engineering Appl.Mathematics/Computational Methods of Engineering Theoretical, Mathematical and Computational Physics Physics Applied mathematics Engineering mathematics Integralgleichung (DE-588)4027229-1 gnd Approximation (DE-588)4002498-2 gnd Grenzwertberechnung (DE-588)4158161-1 gnd Randelemente-Methode (DE-588)4076508-8 gnd Komplexe Variable (DE-588)4164905-9 gnd |
topic_facet | Engineering Appl.Mathematics/Computational Methods of Engineering Theoretical, Mathematical and Computational Physics Physics Applied mathematics Engineering mathematics Integralgleichung Approximation Grenzwertberechnung Randelemente-Methode Komplexe Variable |
url | https://doi.org/10.1007/978-1-4471-3611-8 |
work_keys_str_mv | AT hromadkatheodorev advancesinthecomplexvariableboundaryelementmethod AT whitleyrobertj advancesinthecomplexvariableboundaryelementmethod |