Concurrent Learning and Information Processing: A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control
Many monitoring, forecasting, and control operations occur in settings where relationships among key measurements must be learned quickly. Examples are on-line industrial processes where influent material is not consistent over time, energy load or price forecasting where demand characteristics chan...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1997
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | Many monitoring, forecasting, and control operations occur in settings where relationships among key measurements must be learned quickly. Examples are on-line industrial processes where influent material is not consistent over time, energy load or price forecasting where demand characteristics change rapidly,and health management where relationships among monitored variables must be learned for each patient-treatment combination. The solution presented is a new neuro-computing system that learns in real-time, even when data arrival rates are several million measurements per second. The book describes benefits and features of the system, statistical foundations for the system, and several related models. The book also describes available system software |
Beschreibung: | 1 Online-Ressource (288 p) |
ISBN: | 9781461304319 |
DOI: | 10.1007/978-1-4613-0431-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045185303 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461304319 |9 978-1-4613-0431-9 | ||
024 | 7 | |a 10.1007/978-1-4613-0431-9 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4613-0431-9 | ||
035 | |a (OCoLC)1053823713 | ||
035 | |a (DE-599)BVBBV045185303 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621.3 |2 23 | |
100 | 1 | |a Jannarone, Robert J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Concurrent Learning and Information Processing |b A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control |c by Robert J. Jannarone |
264 | 1 | |a Boston, MA |b Springer US |c 1997 | |
300 | |a 1 Online-Ressource (288 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Many monitoring, forecasting, and control operations occur in settings where relationships among key measurements must be learned quickly. Examples are on-line industrial processes where influent material is not consistent over time, energy load or price forecasting where demand characteristics change rapidly,and health management where relationships among monitored variables must be learned for each patient-treatment combination. The solution presented is a new neuro-computing system that learns in real-time, even when data arrival rates are several million measurements per second. The book describes benefits and features of the system, statistical foundations for the system, and several related models. The book also describes available system software | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Statistics | |
650 | 4 | |a Electrical engineering | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461380498 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0431-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030574481 | ||
966 | e | |u https://doi.org/10.1007/978-1-4613-0431-9 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178875042758656 |
---|---|
any_adam_object | |
author | Jannarone, Robert J. |
author_facet | Jannarone, Robert J. |
author_role | aut |
author_sort | Jannarone, Robert J. |
author_variant | r j j rj rjj |
building | Verbundindex |
bvnumber | BV045185303 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4613-0431-9 (OCoLC)1053823713 (DE-599)BVBBV045185303 |
dewey-full | 621.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3 |
dewey-search | 621.3 |
dewey-sort | 3621.3 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-1-4613-0431-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02367nmm a2200457zc 4500</leader><controlfield tag="001">BV045185303</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461304319</subfield><subfield code="9">978-1-4613-0431-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0431-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4613-0431-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053823713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185303</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jannarone, Robert J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concurrent Learning and Information Processing</subfield><subfield code="b">A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control</subfield><subfield code="c">by Robert J. Jannarone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (288 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many monitoring, forecasting, and control operations occur in settings where relationships among key measurements must be learned quickly. Examples are on-line industrial processes where influent material is not consistent over time, energy load or price forecasting where demand characteristics change rapidly,and health management where relationships among monitored variables must be learned for each patient-treatment combination. The solution presented is a new neuro-computing system that learns in real-time, even when data arrival rates are several million measurements per second. The book describes benefits and features of the system, statistical foundations for the system, and several related models. The book also describes available system software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461380498</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0431-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030574481</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-0431-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045185303 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:55Z |
institution | BVB |
isbn | 9781461304319 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030574481 |
oclc_num | 1053823713 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (288 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer US |
record_format | marc |
spelling | Jannarone, Robert J. Verfasser aut Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control by Robert J. Jannarone Boston, MA Springer US 1997 1 Online-Ressource (288 p) txt rdacontent c rdamedia cr rdacarrier Many monitoring, forecasting, and control operations occur in settings where relationships among key measurements must be learned quickly. Examples are on-line industrial processes where influent material is not consistent over time, energy load or price forecasting where demand characteristics change rapidly,and health management where relationships among monitored variables must be learned for each patient-treatment combination. The solution presented is a new neuro-computing system that learns in real-time, even when data arrival rates are several million measurements per second. The book describes benefits and features of the system, statistical foundations for the system, and several related models. The book also describes available system software Engineering Electrical Engineering Statistics, general Artificial Intelligence (incl. Robotics) Artificial intelligence Statistics Electrical engineering Erscheint auch als Druck-Ausgabe 9781461380498 https://doi.org/10.1007/978-1-4613-0431-9 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Jannarone, Robert J. Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control Engineering Electrical Engineering Statistics, general Artificial Intelligence (incl. Robotics) Artificial intelligence Statistics Electrical engineering |
title | Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control |
title_auth | Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control |
title_exact_search | Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control |
title_full | Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control by Robert J. Jannarone |
title_fullStr | Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control by Robert J. Jannarone |
title_full_unstemmed | Concurrent Learning and Information Processing A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control by Robert J. Jannarone |
title_short | Concurrent Learning and Information Processing |
title_sort | concurrent learning and information processing a neuro computing system that learns during monitoring forecasting and control |
title_sub | A Neuro-Computing System that Learns During Monitoring, Forecasting, and Control |
topic | Engineering Electrical Engineering Statistics, general Artificial Intelligence (incl. Robotics) Artificial intelligence Statistics Electrical engineering |
topic_facet | Engineering Electrical Engineering Statistics, general Artificial Intelligence (incl. Robotics) Artificial intelligence Statistics Electrical engineering |
url | https://doi.org/10.1007/978-1-4613-0431-9 |
work_keys_str_mv | AT jannaronerobertj concurrentlearningandinformationprocessinganeurocomputingsystemthatlearnsduringmonitoringforecastingandcontrol |