Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena:
At the date of this writing, there is no question that the boundary element method has emerged as one of the major revolutions on the engineering science of computational mechanics. The emergence of the technique from relative obscurity to a cutting edge engineering analysis tool in the short space...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1992
|
Schriftenreihe: | Lecture Notes in Engineering
74 |
Schlagworte: | |
Online-Zugang: | DE-634 URL des Erstveröffentlichers Inhaltsverzeichnis |
Zusammenfassung: | At the date of this writing, there is no question that the boundary element method has emerged as one of the major revolutions on the engineering science of computational mechanics. The emergence of the technique from relative obscurity to a cutting edge engineering analysis tool in the short space of basically a ten to fifteen year time span is unparalleled since the advent of the finite element method. At the recent international conference BEM XI, well over one hundred papers were presented and many were pub lished in three hard-bound volumes. The exponential increase in interest in the subject is comparable to that shown in the early days of finite elements. The diversity of appli cations of BEM, the broad base of interested parties, and the ever-increasing presence of the computer as an engineering tool are probably the reasons for the upsurge in pop ularity of BEM among researchers and industrial practitioners. Only in the past few years has the BEM audience become large enough that we have seen the development of specialty books on specific applications of the boundary element method. The present text is one such book. In this work, we have attempted to present a self-contained treatment of the analysis of physical phenomena governed by equations containing biharmonic operators. The biharmonic operator defines a very important class of fourth-order PDE problems which includes deflections of beams and thin plates, and creeping flow of viscous fluids |
Beschreibung: | 1 Online-Ressource (XII, 250 p. 3 illus) |
ISBN: | 9783642847011 |
DOI: | 10.1007/978-3-642-84701-1 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV045184886 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1992 xx o|||| 00||| eng d | ||
020 | |a 9783642847011 |9 978-3-642-84701-1 | ||
024 | 7 | |a 10.1007/978-3-642-84701-1 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-84701-1 | ||
035 | |a (OCoLC)1053825013 | ||
035 | |a (DE-599)BVBBV045184886 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a UF 1100 |0 (DE-625)145558: |2 rvk | ||
100 | 1 | |a Camp, Charles V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena |c by Charles V. Camp, G. Steven Gipson |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1992 | |
300 | |a 1 Online-Ressource (XII, 250 p. 3 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Engineering |v 74 | |
520 | |a At the date of this writing, there is no question that the boundary element method has emerged as one of the major revolutions on the engineering science of computational mechanics. The emergence of the technique from relative obscurity to a cutting edge engineering analysis tool in the short space of basically a ten to fifteen year time span is unparalleled since the advent of the finite element method. At the recent international conference BEM XI, well over one hundred papers were presented and many were pub lished in three hard-bound volumes. The exponential increase in interest in the subject is comparable to that shown in the early days of finite elements. The diversity of appli cations of BEM, the broad base of interested parties, and the ever-increasing presence of the computer as an engineering tool are probably the reasons for the upsurge in pop ularity of BEM among researchers and industrial practitioners. Only in the past few years has the BEM audience become large enough that we have seen the development of specialty books on specific applications of the boundary element method. The present text is one such book. In this work, we have attempted to present a self-contained treatment of the analysis of physical phenomena governed by equations containing biharmonic operators. The biharmonic operator defines a very important class of fourth-order PDE problems which includes deflections of beams and thin plates, and creeping flow of viscous fluids | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Engineering | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Fluids | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Randelemente-Methode |0 (DE-588)4076508-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bipotentialgleichung |0 (DE-588)4129761-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturmechanik |0 (DE-588)4126904-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bipotentialgleichung |0 (DE-588)4129761-1 |D s |
689 | 0 | 1 | |a Randelemente-Methode |0 (DE-588)4076508-8 |D s |
689 | 0 | 2 | |a Strukturmechanik |0 (DE-588)4126904-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gipson, G. Steven |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540550204 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-84701-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030574063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030574063 | |
966 | e | |u https://doi.org/10.1007/978-3-642-84701-1 |l DE-634 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1822663820746686464 |
---|---|
adam_text |
INHALTSVERZEICHNIS
INHALTSVERZEICHNIS
ABKUERZUNGSVERZEICHNIS 6
1. EINLEITUNG 9
1.1.EPIDEMIOLOGIE G
1.2 AKTUELLE THERAPIESTRATEGIEN: PROBLEME UND ZIELE \
Q
1.2.1 DOXORUBICIN-INDUZIERTE TOXIZITAET \\
1.2.2 MULTIDRUG- RESISTENZ. 13
1.3 PATHOGENESE DES HODGKIN-LYMPHOMS 15
1.3.1 DIE KONSEKUTIVE AKTIVIERUNG VON NF-KB \G
1.3.2 BYSTANDER-ZELLEN UND TNF-FAMILIE-MOLEKUELE. 23
1.3.3 INHIBIERUNG DER PROAPOPTOTISCHEN TNFR- 25
FAMILIE DURCH C-FLIP
1.3.4 AKTIVIERUNG DES ERK/MAPK-SIGNALWEGS 26
1.3.5 AKTIVIERUNG DES MTOR-SIGNALWEGS 27
1.3.6 ANGIOGENESE DURCH VEGF 28
1.4 FARNESYLTRANSFERASE-INHIBITOREN 29
1.4.1 DAS ENZYM FARNESYLTRANSFERASE 29
1.4.2 ZIELSTRUKTUREN DER FARNESYLTRANSFERASE 31
1.4.3 AKTUELLE KLINISCHE ANWENDUNG VON FTIS IN 37
1
HTTP://D-NB.INFO/1053825013
INHALTSVERZEICHNIS
LYMPHATISCHEN MALIGNITAETEN
1.5 HMG-COA-REDUKTASE-INHIBITOREN
3
G
1.6 FRAGESTELLUNG DER ARBEIT 40
2. MATERIAL UND METHODEN 43
2.1 CHEMIKALIEN UND MATERIALIEN 43
2.2 HL-ZELLLINIEN
46
2.3 GERAETE 46
2.4.VERBRAUCHSMATERIALIEN 47
2.5 ZELLKULTUR 48
2.6 AUFTAUEN VON ZELLEN. 49
2.7 EINFRIEREN VON ZELLEN 50
2.8 BESTIMMUNG DER ZELLZAHL 50
2.9 PLATTIEREN DER ZELLEN 51
2.10 APPLIKATION UND INKUBATION DER PHARMAKA 52
2.11 MESSUNG DER ZELLVIABILITAET: ZELLPROLIFERATIONSTEST 54
XTT
2.12 DURCHFLUSSZYTOMETRISCHE UNTERSUCHUNGEN 55
2.13 STATISTISCHE ANALYSE 58
2
INHALTSVERZEICHNIS
3. ERGEBNISSE
62
3.1 PROLIFERATIONSHEMMUNG DER ZELLLINIEN UNTER 62
EINWIRKUNG VON SIMVASTATIN
3.2 PROLIFERATIONSHEMMUNG DER ZELLLINIEN UNTER 72
EINWIRKUNG VON TIPIFARNIB
3.3 PROLIFERATIONSHEMMUNG DER ZELLLINIEN UNTER 79
EINWIRKUNG VON DOXORUBICIN
3.4 PROLIFERATIONSHEMMUNG DER ZELLLINIEN UNTER 85
SIMULTANER EINWIRKUNG VON DOXORUBICIN UND
SIMVASTATIN.
3.5 PROLIFERATIONSHEMMUNG DER ZELLLINIEN UNTER 91
SEQUENTIELLER EINWIRKUNG VON DOXORUBICIN UND
SIMVASTATIN
3.6 PROLIFERATIONSHEMMUNG DER ZELLLINIEN UNTER 99
EINWIRKUNG VON DOXORUBICIN UND TIPIFARNIB
3.7 AUSWIRKUNGEN VON TIPIFARNIB AUF DIE INTRAZELLULAERE 106
DOXORUBICINKONZENTRATION IN ZELLLINIEN
3.8 WIRKUNG VON TIPIFARNIB AUF MURINE KARDIOMYOZYTEN M
4. DISKUSSION
121
3
INHALTSVERZEICHNIS
4.1 ZUSAMMENFASSUNG DER WICHTIGSTEN ERGEBNISSE. 121
4.2 PROLIFERATIONSHEMMUNG VON ZELLLINIEN DURCH 122
SIMVASTATIN
4.3 PROLIFERATIONSHEMMUNG VON ZELLLINIEN DURCH 125
TIPIFARNIB
4. 4 PROLIFERATIONSHEMMUNG VON ZELLLINIEN DURCH
127
KOMBINATION VON SIMVASTATIN ODER TIPIFARNIB MIT
DEM KONVENTIONELLEN CHEMOTHERAPEUTIKUM
DOXORUBICIN.
4.4.1 PROLIFERATIONSHEMMUNG VON ZELLLINIEN DURCH 127
DOXORUBICIN.
4.4.2 UEBERWIEGEND ANTAGONISTISCHE EFFEKTE BEI
KOINKUBATION VON ZELLLINIEN MIT DOXORUBICIN
UND SIMVASTATIN
128
4.4.3 ADDITIV BIS SYNERGISTISCHE EFFEKTE BEI 129
KOINKUBATION VON ZELLLINIEN MIT TIPIFARNIB UND
DOXORUBICIN
4.5 TOXIZITAET VON DOXORUBICIN UND TIPIFARNIB IN MURINEN 135
KARDIOMYOZYTEN
4
INHALTSVERZEICHNIS
5. ZUSAMMENFASSUNG
6. LITERATURVERZEICHNIS.
7. LEBENSLAUF |
any_adam_object | 1 |
author | Camp, Charles V. Gipson, G. Steven |
author_facet | Camp, Charles V. Gipson, G. Steven |
author_role | aut aut |
author_sort | Camp, Charles V. |
author_variant | c v c cv cvc g s g gs gsg |
building | Verbundindex |
bvnumber | BV045184886 |
classification_rvk | UF 1100 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-84701-1 (OCoLC)1053825013 (DE-599)BVBBV045184886 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-3-642-84701-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV045184886</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1992 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642847011</subfield><subfield code="9">978-3-642-84701-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84701-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-84701-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053825013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045184886</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1100</subfield><subfield code="0">(DE-625)145558:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Camp, Charles V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena</subfield><subfield code="c">by Charles V. Camp, G. Steven Gipson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 250 p. 3 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Engineering</subfield><subfield code="v">74</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At the date of this writing, there is no question that the boundary element method has emerged as one of the major revolutions on the engineering science of computational mechanics. The emergence of the technique from relative obscurity to a cutting edge engineering analysis tool in the short space of basically a ten to fifteen year time span is unparalleled since the advent of the finite element method. At the recent international conference BEM XI, well over one hundred papers were presented and many were pub lished in three hard-bound volumes. The exponential increase in interest in the subject is comparable to that shown in the early days of finite elements. The diversity of appli cations of BEM, the broad base of interested parties, and the ever-increasing presence of the computer as an engineering tool are probably the reasons for the upsurge in pop ularity of BEM among researchers and industrial practitioners. Only in the past few years has the BEM audience become large enough that we have seen the development of specialty books on specific applications of the boundary element method. The present text is one such book. In this work, we have attempted to present a self-contained treatment of the analysis of physical phenomena governed by equations containing biharmonic operators. The biharmonic operator defines a very important class of fourth-order PDE problems which includes deflections of beams and thin plates, and creeping flow of viscous fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bipotentialgleichung</subfield><subfield code="0">(DE-588)4129761-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bipotentialgleichung</subfield><subfield code="0">(DE-588)4129761-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randelemente-Methode</subfield><subfield code="0">(DE-588)4076508-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gipson, G. Steven</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540550204</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84701-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030574063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030574063</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-84701-1</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045184886 |
illustrated | Not Illustrated |
indexdate | 2025-01-30T09:01:13Z |
institution | BVB |
isbn | 9783642847011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030574063 |
oclc_num | 1053825013 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 250 p. 3 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Engineering |
spelling | Camp, Charles V. Verfasser aut Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena by Charles V. Camp, G. Steven Gipson Berlin, Heidelberg Springer Berlin Heidelberg 1992 1 Online-Ressource (XII, 250 p. 3 illus) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Engineering 74 At the date of this writing, there is no question that the boundary element method has emerged as one of the major revolutions on the engineering science of computational mechanics. The emergence of the technique from relative obscurity to a cutting edge engineering analysis tool in the short space of basically a ten to fifteen year time span is unparalleled since the advent of the finite element method. At the recent international conference BEM XI, well over one hundred papers were presented and many were pub lished in three hard-bound volumes. The exponential increase in interest in the subject is comparable to that shown in the early days of finite elements. The diversity of appli cations of BEM, the broad base of interested parties, and the ever-increasing presence of the computer as an engineering tool are probably the reasons for the upsurge in pop ularity of BEM among researchers and industrial practitioners. Only in the past few years has the BEM audience become large enough that we have seen the development of specialty books on specific applications of the boundary element method. The present text is one such book. In this work, we have attempted to present a self-contained treatment of the analysis of physical phenomena governed by equations containing biharmonic operators. The biharmonic operator defines a very important class of fourth-order PDE problems which includes deflections of beams and thin plates, and creeping flow of viscous fluids Engineering Appl.Mathematics/Computational Methods of Engineering Fluid- and Aerodynamics Mechanics Numerical Analysis Numerical analysis Fluids Applied mathematics Engineering mathematics Randelemente-Methode (DE-588)4076508-8 gnd rswk-swf Bipotentialgleichung (DE-588)4129761-1 gnd rswk-swf Strukturmechanik (DE-588)4126904-4 gnd rswk-swf Bipotentialgleichung (DE-588)4129761-1 s Randelemente-Methode (DE-588)4076508-8 s Strukturmechanik (DE-588)4126904-4 s 1\p DE-604 Gipson, G. Steven aut Erscheint auch als Druck-Ausgabe 9783540550204 https://doi.org/10.1007/978-3-642-84701-1 Verlag URL des Erstveröffentlichers Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030574063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Camp, Charles V. Gipson, G. Steven Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena Engineering Appl.Mathematics/Computational Methods of Engineering Fluid- and Aerodynamics Mechanics Numerical Analysis Numerical analysis Fluids Applied mathematics Engineering mathematics Randelemente-Methode (DE-588)4076508-8 gnd Bipotentialgleichung (DE-588)4129761-1 gnd Strukturmechanik (DE-588)4126904-4 gnd |
subject_GND | (DE-588)4076508-8 (DE-588)4129761-1 (DE-588)4126904-4 |
title | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena |
title_auth | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena |
title_exact_search | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena |
title_full | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena by Charles V. Camp, G. Steven Gipson |
title_fullStr | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena by Charles V. Camp, G. Steven Gipson |
title_full_unstemmed | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena by Charles V. Camp, G. Steven Gipson |
title_short | Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena |
title_sort | boundary element analysis of nonhomogeneous biharmonic phenomena |
topic | Engineering Appl.Mathematics/Computational Methods of Engineering Fluid- and Aerodynamics Mechanics Numerical Analysis Numerical analysis Fluids Applied mathematics Engineering mathematics Randelemente-Methode (DE-588)4076508-8 gnd Bipotentialgleichung (DE-588)4129761-1 gnd Strukturmechanik (DE-588)4126904-4 gnd |
topic_facet | Engineering Appl.Mathematics/Computational Methods of Engineering Fluid- and Aerodynamics Mechanics Numerical Analysis Numerical analysis Fluids Applied mathematics Engineering mathematics Randelemente-Methode Bipotentialgleichung Strukturmechanik |
url | https://doi.org/10.1007/978-3-642-84701-1 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030574063&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT campcharlesv boundaryelementanalysisofnonhomogeneousbiharmonicphenomena AT gipsongsteven boundaryelementanalysisofnonhomogeneousbiharmonicphenomena |