Lattice Boltzmann Methods for Shallow Water Flows:
The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows |
Beschreibung: | 1 Online-Ressource (XI, 112 p) |
ISBN: | 9783662082768 |
DOI: | 10.1007/978-3-662-08276-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045178973 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180911s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783662082768 |9 978-3-662-08276-8 | ||
024 | 7 | |a 10.1007/978-3-662-08276-8 |2 doi | |
035 | |a (ZDB-2-EES)978-3-662-08276-8 | ||
035 | |a (OCoLC)1053812881 | ||
035 | |a (DE-599)BVBBV045178973 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 550 |2 23 | |
082 | 0 | |a 526.1 |2 23 | |
100 | 1 | |a Zhou, Jian Guo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lattice Boltzmann Methods for Shallow Water Flows |c by Jian Guo Zhou |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XI, 112 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows | ||
650 | 4 | |a Earth Sciences | |
650 | 4 | |a Geophysics/Geodesy | |
650 | 4 | |a Hydrogeology | |
650 | 4 | |a Engineering Fluid Dynamics | |
650 | 4 | |a Environmental Physics | |
650 | 4 | |a Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution | |
650 | 4 | |a Earth sciences | |
650 | 4 | |a Geophysics | |
650 | 4 | |a Hydrogeology | |
650 | 4 | |a Fluid mechanics | |
650 | 4 | |a Environmental sciences | |
650 | 4 | |a Water pollution | |
650 | 0 | 7 | |a Gittermodell |0 (DE-588)4226961-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Boltzmann-Gleichung |0 (DE-588)4146261-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Flachwasser |0 (DE-588)4121276-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Strömungssimulation |0 (DE-588)4690080-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Flachwasser |0 (DE-588)4121276-9 |D s |
689 | 0 | 1 | |a Numerische Strömungssimulation |0 (DE-588)4690080-9 |D s |
689 | 0 | 2 | |a Gittermodell |0 (DE-588)4226961-1 |D s |
689 | 0 | 3 | |a Boltzmann-Gleichung |0 (DE-588)4146261-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642073939 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-08276-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-EES | ||
940 | 1 | |q ZDB-2-EES_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030568202 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-662-08276-8 |l BTU01 |p ZDB-2-EES |q ZDB-2-EES_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178870046294016 |
---|---|
any_adam_object | |
author | Zhou, Jian Guo |
author_facet | Zhou, Jian Guo |
author_role | aut |
author_sort | Zhou, Jian Guo |
author_variant | j g z jg jgz |
building | Verbundindex |
bvnumber | BV045178973 |
collection | ZDB-2-EES |
ctrlnum | (ZDB-2-EES)978-3-662-08276-8 (OCoLC)1053812881 (DE-599)BVBBV045178973 |
dewey-full | 550 526.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 550 - Earth sciences 526 - Mathematical geography |
dewey-raw | 550 526.1 |
dewey-search | 550 526.1 |
dewey-sort | 3550 |
dewey-tens | 550 - Earth sciences 520 - Astronomy and allied sciences |
discipline | Geologie / Paläontologie Physik |
doi_str_mv | 10.1007/978-3-662-08276-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03969nmm a2200637zc 4500</leader><controlfield tag="001">BV045178973</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180911s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662082768</subfield><subfield code="9">978-3-662-08276-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-08276-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-EES)978-3-662-08276-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053812881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045178973</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">526.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Jian Guo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice Boltzmann Methods for Shallow Water Flows</subfield><subfield code="c">by Jian Guo Zhou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 112 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogeology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering Fluid Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogeology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water pollution</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boltzmann-Gleichung</subfield><subfield code="0">(DE-588)4146261-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flachwasser</subfield><subfield code="0">(DE-588)4121276-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Flachwasser</subfield><subfield code="0">(DE-588)4121276-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Boltzmann-Gleichung</subfield><subfield code="0">(DE-588)4146261-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642073939</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-08276-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-EES</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-EES_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030568202</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-08276-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-EES</subfield><subfield code="q">ZDB-2-EES_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045178973 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:50Z |
institution | BVB |
isbn | 9783662082768 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030568202 |
oclc_num | 1053812881 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XI, 112 p) |
psigel | ZDB-2-EES ZDB-2-EES_Archiv ZDB-2-EES ZDB-2-EES_Archiv |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Zhou, Jian Guo Verfasser aut Lattice Boltzmann Methods for Shallow Water Flows by Jian Guo Zhou Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XI, 112 p) txt rdacontent c rdamedia cr rdacarrier The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows Earth Sciences Geophysics/Geodesy Hydrogeology Engineering Fluid Dynamics Environmental Physics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Earth sciences Geophysics Fluid mechanics Environmental sciences Water pollution Gittermodell (DE-588)4226961-1 gnd rswk-swf Boltzmann-Gleichung (DE-588)4146261-0 gnd rswk-swf Flachwasser (DE-588)4121276-9 gnd rswk-swf Numerische Strömungssimulation (DE-588)4690080-9 gnd rswk-swf Flachwasser (DE-588)4121276-9 s Numerische Strömungssimulation (DE-588)4690080-9 s Gittermodell (DE-588)4226961-1 s Boltzmann-Gleichung (DE-588)4146261-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9783642073939 https://doi.org/10.1007/978-3-662-08276-8 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zhou, Jian Guo Lattice Boltzmann Methods for Shallow Water Flows Earth Sciences Geophysics/Geodesy Hydrogeology Engineering Fluid Dynamics Environmental Physics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Earth sciences Geophysics Fluid mechanics Environmental sciences Water pollution Gittermodell (DE-588)4226961-1 gnd Boltzmann-Gleichung (DE-588)4146261-0 gnd Flachwasser (DE-588)4121276-9 gnd Numerische Strömungssimulation (DE-588)4690080-9 gnd |
subject_GND | (DE-588)4226961-1 (DE-588)4146261-0 (DE-588)4121276-9 (DE-588)4690080-9 |
title | Lattice Boltzmann Methods for Shallow Water Flows |
title_auth | Lattice Boltzmann Methods for Shallow Water Flows |
title_exact_search | Lattice Boltzmann Methods for Shallow Water Flows |
title_full | Lattice Boltzmann Methods for Shallow Water Flows by Jian Guo Zhou |
title_fullStr | Lattice Boltzmann Methods for Shallow Water Flows by Jian Guo Zhou |
title_full_unstemmed | Lattice Boltzmann Methods for Shallow Water Flows by Jian Guo Zhou |
title_short | Lattice Boltzmann Methods for Shallow Water Flows |
title_sort | lattice boltzmann methods for shallow water flows |
topic | Earth Sciences Geophysics/Geodesy Hydrogeology Engineering Fluid Dynamics Environmental Physics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Earth sciences Geophysics Fluid mechanics Environmental sciences Water pollution Gittermodell (DE-588)4226961-1 gnd Boltzmann-Gleichung (DE-588)4146261-0 gnd Flachwasser (DE-588)4121276-9 gnd Numerische Strömungssimulation (DE-588)4690080-9 gnd |
topic_facet | Earth Sciences Geophysics/Geodesy Hydrogeology Engineering Fluid Dynamics Environmental Physics Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Earth sciences Geophysics Fluid mechanics Environmental sciences Water pollution Gittermodell Boltzmann-Gleichung Flachwasser Numerische Strömungssimulation |
url | https://doi.org/10.1007/978-3-662-08276-8 |
work_keys_str_mv | AT zhoujianguo latticeboltzmannmethodsforshallowwaterflows |