New Developments in Singularity Theory:
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in mos...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2001
|
Schriftenreihe: | NATO Science Series, Series II: Mathematics, Physics and Chemistry
21 |
Schlagworte: | |
Online-Zugang: | UBT01 Volltext |
Zusammenfassung: | Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps |
Beschreibung: | 1 Online-Ressource (VIII, 472 p) |
ISBN: | 9789401008341 |
DOI: | 10.1007/978-94-010-0834-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045152318 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180828s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789401008341 |9 978-94-010-0834-1 | ||
024 | 7 | |a 10.1007/978-94-010-0834-1 |2 doi | |
035 | |a (ZDB-2-CMS)978-94-010-0834-1 | ||
035 | |a (OCoLC)1050948379 | ||
035 | |a (DE-599)BVBBV045152318 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
082 | 0 | |a 515.94 |2 23 | |
245 | 1 | 0 | |a New Developments in Singularity Theory |c edited by D. Siersma, C. T. C. Wall, V. Zakalyukin |
246 | 1 | 3 | |a Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000 |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2001 | |
300 | |a 1 Online-Ressource (VIII, 472 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO Science Series, Series II: Mathematics, Physics and Chemistry |v 21 | |
520 | |a Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic geometry | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Functions of real variables | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Complex manifolds | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2000 |z Cambridge |2 gnd-content | |
689 | 0 | 0 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Siersma, D. |4 edt | |
700 | 1 | |a Wall, C. T. C. |4 edt | |
700 | 1 | |a Zakalyukin, V. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780792369974 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-010-0834-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CMS | ||
940 | 1 | |q ZDB-2-CMS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030541986 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-94-010-0834-1 |l UBT01 |p ZDB-2-CMS |q ZDB-2-CMS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178825516417024 |
---|---|
any_adam_object | |
author2 | Siersma, D. Wall, C. T. C. Zakalyukin, V. |
author2_role | edt edt edt |
author2_variant | d s ds c t c w ctc ctcw v z vz |
author_facet | Siersma, D. Wall, C. T. C. Zakalyukin, V. |
building | Verbundindex |
bvnumber | BV045152318 |
collection | ZDB-2-CMS |
ctrlnum | (ZDB-2-CMS)978-94-010-0834-1 (OCoLC)1050948379 (DE-599)BVBBV045152318 |
dewey-full | 515.94 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.94 |
dewey-search | 515.94 |
dewey-sort | 3515.94 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-010-0834-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03206nmm a2200637zcb4500</leader><controlfield tag="001">BV045152318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180828s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401008341</subfield><subfield code="9">978-94-010-0834-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-0834-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CMS)978-94-010-0834-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050948379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045152318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.94</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Developments in Singularity Theory</subfield><subfield code="c">edited by D. Siersma, C. T. C. Wall, V. Zakalyukin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 472 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO Science Series, Series II: Mathematics, Physics and Chemistry</subfield><subfield code="v">21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of real variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Cambridge</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siersma, D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wall, C. T. C.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zakalyukin, V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780792369974</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-0834-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CMS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CMS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030541986</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-010-0834-1</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-CMS</subfield><subfield code="q">ZDB-2-CMS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2000 Cambridge gnd-content |
genre_facet | Konferenzschrift 2000 Cambridge |
id | DE-604.BV045152318 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:08Z |
institution | BVB |
isbn | 9789401008341 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030541986 |
oclc_num | 1050948379 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource (VIII, 472 p) |
psigel | ZDB-2-CMS ZDB-2-CMS_2000/2004 ZDB-2-CMS ZDB-2-CMS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Netherlands |
record_format | marc |
series2 | NATO Science Series, Series II: Mathematics, Physics and Chemistry |
spelling | New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000 Dordrecht Springer Netherlands 2001 1 Online-Ressource (VIII, 472 p) txt rdacontent c rdamedia cr rdacarrier NATO Science Series, Series II: Mathematics, Physics and Chemistry 21 Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps Mathematics Several Complex Variables and Analytic Spaces Global Analysis and Analysis on Manifolds Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Functions of real variables Functions of complex variables Complex manifolds Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2000 Cambridge gnd-content Singularität Mathematik (DE-588)4077459-4 s 2\p DE-604 Siersma, D. edt Wall, C. T. C. edt Zakalyukin, V. edt Erscheint auch als Druck-Ausgabe 9780792369974 https://doi.org/10.1007/978-94-010-0834-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | New Developments in Singularity Theory Mathematics Several Complex Variables and Analytic Spaces Global Analysis and Analysis on Manifolds Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Functions of real variables Functions of complex variables Complex manifolds Singularität Mathematik (DE-588)4077459-4 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)1071861417 |
title | New Developments in Singularity Theory |
title_alt | Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 31 July-11 August 2000 |
title_auth | New Developments in Singularity Theory |
title_exact_search | New Developments in Singularity Theory |
title_full | New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin |
title_fullStr | New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin |
title_full_unstemmed | New Developments in Singularity Theory edited by D. Siersma, C. T. C. Wall, V. Zakalyukin |
title_short | New Developments in Singularity Theory |
title_sort | new developments in singularity theory |
topic | Mathematics Several Complex Variables and Analytic Spaces Global Analysis and Analysis on Manifolds Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Functions of real variables Functions of complex variables Complex manifolds Singularität Mathematik (DE-588)4077459-4 gnd |
topic_facet | Mathematics Several Complex Variables and Analytic Spaces Global Analysis and Analysis on Manifolds Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Functions of real variables Functions of complex variables Complex manifolds Singularität Mathematik Konferenzschrift 2000 Cambridge |
url | https://doi.org/10.1007/978-94-010-0834-1 |
work_keys_str_mv | AT siersmad newdevelopmentsinsingularitytheory AT wallctc newdevelopmentsinsingularitytheory AT zakalyukinv newdevelopmentsinsingularitytheory AT siersmad proceedingsofthenatoadvancedstudyinstitutecambridgeuk31july11august2000 AT wallctc proceedingsofthenatoadvancedstudyinstitutecambridgeuk31july11august2000 AT zakalyukinv proceedingsofthenatoadvancedstudyinstitutecambridgeuk31july11august2000 |