Statistical Dynamics and Reliability Theory for Mechanical Structures:
The theory of random processes is an integral part of the analysis and synthesis of complex engineering systems. This textbook systematically presents the fundamentals of statistical dynamics and reliability theory. The theory of Markovian processes used during the analysis of random dynamic process...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Foundations of Engineering Mechanics
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 URL des Erstveröffentlichers |
Zusammenfassung: | The theory of random processes is an integral part of the analysis and synthesis of complex engineering systems. This textbook systematically presents the fundamentals of statistical dynamics and reliability theory. The theory of Markovian processes used during the analysis of random dynamic processes in mechanical systems is described in detail. Examples are machines, instruments and structures loaded with perturbations. The reliability and lifetime of those objects depend on how properly these perturbations are taken into account. Random vibrations with finite and infinite numbers of degrees of freedom are analyzed as well as the theory and numerical methods of non-stationary processes under the conditions of statistical indeterminacy. This textbook is addressed to students and post-graduate of technical universities. It can be also useful to lecturers and mechanical engineers, including designers in different industries |
Beschreibung: | 1 Online-Ressource (XII, 448 p) |
ISBN: | 9783540458265 |
DOI: | 10.1007/978-3-540-45826-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045149256 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783540458265 |9 978-3-540-45826-5 | ||
024 | 7 | |a 10.1007/978-3-540-45826-5 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-540-45826-5 | ||
035 | |a (OCoLC)1050946577 | ||
035 | |a (DE-599)BVBBV045149256 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 620.1 |2 23 | |
100 | 1 | |a Svetlitsky, V. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistical Dynamics and Reliability Theory for Mechanical Structures |c by V. A. Svetlitsky |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XII, 448 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Foundations of Engineering Mechanics | |
520 | |a The theory of random processes is an integral part of the analysis and synthesis of complex engineering systems. This textbook systematically presents the fundamentals of statistical dynamics and reliability theory. The theory of Markovian processes used during the analysis of random dynamic processes in mechanical systems is described in detail. Examples are machines, instruments and structures loaded with perturbations. The reliability and lifetime of those objects depend on how properly these perturbations are taken into account. Random vibrations with finite and infinite numbers of degrees of freedom are analyzed as well as the theory and numerical methods of non-stationary processes under the conditions of statistical indeterminacy. This textbook is addressed to students and post-graduate of technical universities. It can be also useful to lecturers and mechanical engineers, including designers in different industries | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Theoretical and Applied Mechanics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Engineering | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Statistics | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Mechanics, Applied | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanisches System |0 (DE-588)4132811-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zuverlässigkeitstheorie |0 (DE-588)4195525-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanisches System |0 (DE-588)4132811-5 |D s |
689 | 0 | 1 | |a Zuverlässigkeitstheorie |0 (DE-588)4195525-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mechanisches System |0 (DE-588)4132811-5 |D s |
689 | 1 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783642536571 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-45826-5 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538955 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-540-45826-5 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-540-45826-5 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178820730716160 |
---|---|
any_adam_object | |
author | Svetlitsky, V. A. |
author_facet | Svetlitsky, V. A. |
author_role | aut |
author_sort | Svetlitsky, V. A. |
author_variant | v a s va vas |
building | Verbundindex |
bvnumber | BV045149256 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-540-45826-5 (OCoLC)1050946577 (DE-599)BVBBV045149256 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-3-540-45826-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03716nmm a2200697zc 4500</leader><controlfield tag="001">BV045149256</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540458265</subfield><subfield code="9">978-3-540-45826-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-45826-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-540-45826-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050946577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045149256</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Svetlitsky, V. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical Dynamics and Reliability Theory for Mechanical Structures</subfield><subfield code="c">by V. A. Svetlitsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 448 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Foundations of Engineering Mechanics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of random processes is an integral part of the analysis and synthesis of complex engineering systems. This textbook systematically presents the fundamentals of statistical dynamics and reliability theory. The theory of Markovian processes used during the analysis of random dynamic processes in mechanical systems is described in detail. Examples are machines, instruments and structures loaded with perturbations. The reliability and lifetime of those objects depend on how properly these perturbations are taken into account. Random vibrations with finite and infinite numbers of degrees of freedom are analyzed as well as the theory and numerical methods of non-stationary processes under the conditions of statistical indeterminacy. This textbook is addressed to students and post-graduate of technical universities. It can be also useful to lecturers and mechanical engineers, including designers in different industries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Applied Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zuverlässigkeitstheorie</subfield><subfield code="0">(DE-588)4195525-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zuverlässigkeitstheorie</subfield><subfield code="0">(DE-588)4195525-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783642536571</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-45826-5</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538955</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-45826-5</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-45826-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045149256 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:03Z |
institution | BVB |
isbn | 9783540458265 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538955 |
oclc_num | 1050946577 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XII, 448 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Foundations of Engineering Mechanics |
spelling | Svetlitsky, V. A. Verfasser aut Statistical Dynamics and Reliability Theory for Mechanical Structures by V. A. Svetlitsky Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XII, 448 p) txt rdacontent c rdamedia cr rdacarrier Foundations of Engineering Mechanics The theory of random processes is an integral part of the analysis and synthesis of complex engineering systems. This textbook systematically presents the fundamentals of statistical dynamics and reliability theory. The theory of Markovian processes used during the analysis of random dynamic processes in mechanical systems is described in detail. Examples are machines, instruments and structures loaded with perturbations. The reliability and lifetime of those objects depend on how properly these perturbations are taken into account. Random vibrations with finite and infinite numbers of degrees of freedom are analyzed as well as the theory and numerical methods of non-stationary processes under the conditions of statistical indeterminacy. This textbook is addressed to students and post-graduate of technical universities. It can be also useful to lecturers and mechanical engineers, including designers in different industries Engineering Theoretical and Applied Mechanics Probability Theory and Stochastic Processes Appl.Mathematics/Computational Methods of Engineering Computational Intelligence Mechanics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Probabilities Statistics Applied mathematics Engineering mathematics Computational intelligence Mechanics, Applied Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Mechanisches System (DE-588)4132811-5 gnd rswk-swf Zuverlässigkeitstheorie (DE-588)4195525-0 gnd rswk-swf Mechanisches System (DE-588)4132811-5 s Zuverlässigkeitstheorie (DE-588)4195525-0 s 1\p DE-604 Stochastischer Prozess (DE-588)4057630-9 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9783642536571 https://doi.org/10.1007/978-3-540-45826-5 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Svetlitsky, V. A. Statistical Dynamics and Reliability Theory for Mechanical Structures Engineering Theoretical and Applied Mechanics Probability Theory and Stochastic Processes Appl.Mathematics/Computational Methods of Engineering Computational Intelligence Mechanics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Probabilities Statistics Applied mathematics Engineering mathematics Computational intelligence Mechanics, Applied Stochastischer Prozess (DE-588)4057630-9 gnd Mechanisches System (DE-588)4132811-5 gnd Zuverlässigkeitstheorie (DE-588)4195525-0 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4132811-5 (DE-588)4195525-0 |
title | Statistical Dynamics and Reliability Theory for Mechanical Structures |
title_auth | Statistical Dynamics and Reliability Theory for Mechanical Structures |
title_exact_search | Statistical Dynamics and Reliability Theory for Mechanical Structures |
title_full | Statistical Dynamics and Reliability Theory for Mechanical Structures by V. A. Svetlitsky |
title_fullStr | Statistical Dynamics and Reliability Theory for Mechanical Structures by V. A. Svetlitsky |
title_full_unstemmed | Statistical Dynamics and Reliability Theory for Mechanical Structures by V. A. Svetlitsky |
title_short | Statistical Dynamics and Reliability Theory for Mechanical Structures |
title_sort | statistical dynamics and reliability theory for mechanical structures |
topic | Engineering Theoretical and Applied Mechanics Probability Theory and Stochastic Processes Appl.Mathematics/Computational Methods of Engineering Computational Intelligence Mechanics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Probabilities Statistics Applied mathematics Engineering mathematics Computational intelligence Mechanics, Applied Stochastischer Prozess (DE-588)4057630-9 gnd Mechanisches System (DE-588)4132811-5 gnd Zuverlässigkeitstheorie (DE-588)4195525-0 gnd |
topic_facet | Engineering Theoretical and Applied Mechanics Probability Theory and Stochastic Processes Appl.Mathematics/Computational Methods of Engineering Computational Intelligence Mechanics Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Probabilities Statistics Applied mathematics Engineering mathematics Computational intelligence Mechanics, Applied Stochastischer Prozess Mechanisches System Zuverlässigkeitstheorie |
url | https://doi.org/10.1007/978-3-540-45826-5 |
work_keys_str_mv | AT svetlitskyva statisticaldynamicsandreliabilitytheoryformechanicalstructures |