Positive 1D and 2D Systems:
In the last decade a dynamic development in positive systems has been observed. Roughly speaking, positive systems are systems whose inputs, state variables and outputs take only nonnegative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers an...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2002
|
Schriftenreihe: | Communications and Control Engineering
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | In the last decade a dynamic development in positive systems has been observed. Roughly speaking, positive systems are systems whose inputs, state variables and outputs take only nonnegative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear system behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc. The basic mathematical tools for analysis and synthesis of linear systems are linear spaces and the theory of linear operators. Positive linear systems are defined on cones and not on linear spaces. This is why the theory of positive systems is more complicated and less advanced. The theory of positive systems has some elements in common with theories of linear and non-linear systems. Schematically the relationship between the theories of linear, non-linear and positive systems is shown in the following figure Figure 1 |
Beschreibung: | 1 Online-Ressource (XIII, 431 p) |
ISBN: | 9781447102212 |
DOI: | 10.1007/978-1-4471-0221-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045148731 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781447102212 |9 978-1-4471-0221-2 | ||
024 | 7 | |a 10.1007/978-1-4471-0221-2 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4471-0221-2 | ||
035 | |a (OCoLC)1050930884 | ||
035 | |a (DE-599)BVBBV045148731 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 004.6 |2 23 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Kaczorek, Tadeusz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Positive 1D and 2D Systems |c by Tadeusz Kaczorek |
264 | 1 | |a London |b Springer London |c 2002 | |
300 | |a 1 Online-Ressource (XIII, 431 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Communications and Control Engineering | |
520 | |a In the last decade a dynamic development in positive systems has been observed. Roughly speaking, positive systems are systems whose inputs, state variables and outputs take only nonnegative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear system behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc. The basic mathematical tools for analysis and synthesis of linear systems are linear spaces and the theory of linear operators. Positive linear systems are defined on cones and not on linear spaces. This is why the theory of positive systems is more complicated and less advanced. The theory of positive systems has some elements in common with theories of linear and non-linear systems. Schematically the relationship between the theories of linear, non-linear and positive systems is shown in the following figure Figure 1 | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Computer Communication Networks | |
650 | 4 | |a Control | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Computer science | |
650 | 4 | |a Computer communication systems | |
650 | 4 | |a System theory | |
650 | 4 | |a Control engineering | |
650 | 0 | 7 | |a Lineares zeitinvariantes System |0 (DE-588)4213494-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtnegative Matrix |0 (DE-588)4310434-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineares zeitinvariantes System |0 (DE-588)4213494-8 |D s |
689 | 0 | 1 | |a Nichtnegative Matrix |0 (DE-588)4310434-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781447110972 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0221-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538430 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4471-0221-2 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4471-0221-2 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819220766720 |
---|---|
any_adam_object | |
author | Kaczorek, Tadeusz |
author_facet | Kaczorek, Tadeusz |
author_role | aut |
author_sort | Kaczorek, Tadeusz |
author_variant | t k tk |
building | Verbundindex |
bvnumber | BV045148731 |
classification_rvk | SK 620 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4471-0221-2 (OCoLC)1050930884 (DE-599)BVBBV045148731 |
dewey-full | 004.6 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.6 |
dewey-search | 004.6 |
dewey-sort | 14.6 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4471-0221-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03213nmm a2200565zc 4500</leader><controlfield tag="001">BV045148731</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447102212</subfield><subfield code="9">978-1-4471-0221-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0221-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4471-0221-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050930884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148731</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaczorek, Tadeusz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Positive 1D and 2D Systems</subfield><subfield code="c">by Tadeusz Kaczorek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 431 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Communications and Control Engineering</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last decade a dynamic development in positive systems has been observed. Roughly speaking, positive systems are systems whose inputs, state variables and outputs take only nonnegative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear system behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc. The basic mathematical tools for analysis and synthesis of linear systems are linear spaces and the theory of linear operators. Positive linear systems are defined on cones and not on linear spaces. This is why the theory of positive systems is more complicated and less advanced. The theory of positive systems has some elements in common with theories of linear and non-linear systems. Schematically the relationship between the theories of linear, non-linear and positive systems is shown in the following figure Figure 1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Communication Networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares zeitinvariantes System</subfield><subfield code="0">(DE-588)4213494-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtnegative Matrix</subfield><subfield code="0">(DE-588)4310434-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares zeitinvariantes System</subfield><subfield code="0">(DE-588)4213494-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtnegative Matrix</subfield><subfield code="0">(DE-588)4310434-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781447110972</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0221-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538430</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0221-2</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0221-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148731 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:02Z |
institution | BVB |
isbn | 9781447102212 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538430 |
oclc_num | 1050930884 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XIII, 431 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer London |
record_format | marc |
series2 | Communications and Control Engineering |
spelling | Kaczorek, Tadeusz Verfasser aut Positive 1D and 2D Systems by Tadeusz Kaczorek London Springer London 2002 1 Online-Ressource (XIII, 431 p) txt rdacontent c rdamedia cr rdacarrier Communications and Control Engineering In the last decade a dynamic development in positive systems has been observed. Roughly speaking, positive systems are systems whose inputs, state variables and outputs take only nonnegative values. Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A variety of models having positive linear system behaviour can be found in engineering, management science, economics, social sciences, biology and medicine, etc. The basic mathematical tools for analysis and synthesis of linear systems are linear spaces and the theory of linear operators. Positive linear systems are defined on cones and not on linear spaces. This is why the theory of positive systems is more complicated and less advanced. The theory of positive systems has some elements in common with theories of linear and non-linear systems. Schematically the relationship between the theories of linear, non-linear and positive systems is shown in the following figure Figure 1 Computer Science Computer Communication Networks Control Systems Theory, Control Computer science Computer communication systems System theory Control engineering Lineares zeitinvariantes System (DE-588)4213494-8 gnd rswk-swf Nichtnegative Matrix (DE-588)4310434-4 gnd rswk-swf Lineares zeitinvariantes System (DE-588)4213494-8 s Nichtnegative Matrix (DE-588)4310434-4 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9781447110972 https://doi.org/10.1007/978-1-4471-0221-2 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kaczorek, Tadeusz Positive 1D and 2D Systems Computer Science Computer Communication Networks Control Systems Theory, Control Computer science Computer communication systems System theory Control engineering Lineares zeitinvariantes System (DE-588)4213494-8 gnd Nichtnegative Matrix (DE-588)4310434-4 gnd |
subject_GND | (DE-588)4213494-8 (DE-588)4310434-4 |
title | Positive 1D and 2D Systems |
title_auth | Positive 1D and 2D Systems |
title_exact_search | Positive 1D and 2D Systems |
title_full | Positive 1D and 2D Systems by Tadeusz Kaczorek |
title_fullStr | Positive 1D and 2D Systems by Tadeusz Kaczorek |
title_full_unstemmed | Positive 1D and 2D Systems by Tadeusz Kaczorek |
title_short | Positive 1D and 2D Systems |
title_sort | positive 1d and 2d systems |
topic | Computer Science Computer Communication Networks Control Systems Theory, Control Computer science Computer communication systems System theory Control engineering Lineares zeitinvariantes System (DE-588)4213494-8 gnd Nichtnegative Matrix (DE-588)4310434-4 gnd |
topic_facet | Computer Science Computer Communication Networks Control Systems Theory, Control Computer science Computer communication systems System theory Control engineering Lineares zeitinvariantes System Nichtnegative Matrix |
url | https://doi.org/10.1007/978-1-4471-0221-2 |
work_keys_str_mv | AT kaczorektadeusz positive1dand2dsystems |