Static Crosstalk-Noise Analysis: For Deep Sub-Micron Digital Designs
As the feature size decreases in deep sub-micron designs, coupling capacitance becomes the dominant factor in total capacitance. The resulting crosstalk noise may be responsible for signal integrity issues and significant timing variation. Traditionally, static timing analysis tools have ignored cro...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2004
|
Schlagworte: | |
Online-Zugang: | FHI01 BTU01 Volltext |
Zusammenfassung: | As the feature size decreases in deep sub-micron designs, coupling capacitance becomes the dominant factor in total capacitance. The resulting crosstalk noise may be responsible for signal integrity issues and significant timing variation. Traditionally, static timing analysis tools have ignored cross coupling effects between wires altogether. Newer tools simply approximate the coupling capacitance by a 2X Miller factor in order to compute the worst case delay. The latter approach not only reduces delay calculation accuracy, but can also be shown to underestimate the delay in certain scenarios. This book describes accurate but conservative methods for computing delay variation due to coupling. Furthermore, most of these methods are computationally efficient enough to be employed in a static timing analysis tool for complex integrated digital circuits. To achieve accuracy, a more accurate computation of the Miller factor is derived. To achieve both computational efficiency and accuracy, a variety of mechanisms for pruning the search space are detailed, including: -Spatial pruning - reducing aggressors to those in physical proximity, -Electrical pruning - reducing aggressors by electrical strength, -Temporal pruning - reducing aggressors using timing windows, -Functional pruning - reducing aggressors by Boolean functional analysis |
Beschreibung: | 1 Online-Ressource (XVIII, 113 p) |
ISBN: | 9781402080920 |
DOI: | 10.1007/b117251 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV045148677 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180827s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781402080920 |9 978-1-4020-8092-0 | ||
024 | 7 | |a 10.1007/b117251 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4020-8092-0 | ||
035 | |a (OCoLC)1050938558 | ||
035 | |a (DE-599)BVBBV045148677 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-634 | ||
082 | 0 | |a 621.3815 |2 23 | |
100 | 1 | |a Chen, Pinhong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Static Crosstalk-Noise Analysis |b For Deep Sub-Micron Digital Designs |c by Pinhong Chen, Desmond A. Kirkpatrick, Kurt Keutzer |
264 | 1 | |a Boston, MA |b Springer US |c 2004 | |
300 | |a 1 Online-Ressource (XVIII, 113 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a As the feature size decreases in deep sub-micron designs, coupling capacitance becomes the dominant factor in total capacitance. The resulting crosstalk noise may be responsible for signal integrity issues and significant timing variation. Traditionally, static timing analysis tools have ignored cross coupling effects between wires altogether. Newer tools simply approximate the coupling capacitance by a 2X Miller factor in order to compute the worst case delay. The latter approach not only reduces delay calculation accuracy, but can also be shown to underestimate the delay in certain scenarios. This book describes accurate but conservative methods for computing delay variation due to coupling. Furthermore, most of these methods are computationally efficient enough to be employed in a static timing analysis tool for complex integrated digital circuits. To achieve accuracy, a more accurate computation of the Miller factor is derived. To achieve both computational efficiency and accuracy, a variety of mechanisms for pruning the search space are detailed, including: -Spatial pruning - reducing aggressors to those in physical proximity, -Electrical pruning - reducing aggressors by electrical strength, -Temporal pruning - reducing aggressors using timing windows, -Functional pruning - reducing aggressors by Boolean functional analysis | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Circuits and Systems | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Computer-Aided Engineering (CAD, CAE) and Design | |
650 | 4 | |a Engineering | |
650 | 4 | |a Computer-aided engineering | |
650 | 4 | |a Electrical engineering | |
650 | 4 | |a Electronic circuits | |
700 | 1 | |a Kirkpatrick, Desmond A. |4 aut | |
700 | 1 | |a Keutzer, Kurt |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781402080913 |
856 | 4 | 0 | |u https://doi.org/10.1007/b117251 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030538376 | ||
966 | e | |u https://doi.org/10.1007/b117251 |l FHI01 |p ZDB-2-ENG |q ZDB-2-ENG_2000/2004 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b117251 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178819052994560 |
---|---|
any_adam_object | |
author | Chen, Pinhong Kirkpatrick, Desmond A. Keutzer, Kurt |
author_facet | Chen, Pinhong Kirkpatrick, Desmond A. Keutzer, Kurt |
author_role | aut aut aut |
author_sort | Chen, Pinhong |
author_variant | p c pc d a k da dak k k kk |
building | Verbundindex |
bvnumber | BV045148677 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4020-8092-0 (OCoLC)1050938558 (DE-599)BVBBV045148677 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/b117251 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03115nmm a2200493zc 4500</leader><controlfield tag="001">BV045148677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180827s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402080920</subfield><subfield code="9">978-1-4020-8092-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b117251</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4020-8092-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1050938558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045148677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Pinhong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Static Crosstalk-Noise Analysis</subfield><subfield code="b">For Deep Sub-Micron Digital Designs</subfield><subfield code="c">by Pinhong Chen, Desmond A. Kirkpatrick, Kurt Keutzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 113 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the feature size decreases in deep sub-micron designs, coupling capacitance becomes the dominant factor in total capacitance. The resulting crosstalk noise may be responsible for signal integrity issues and significant timing variation. Traditionally, static timing analysis tools have ignored cross coupling effects between wires altogether. Newer tools simply approximate the coupling capacitance by a 2X Miller factor in order to compute the worst case delay. The latter approach not only reduces delay calculation accuracy, but can also be shown to underestimate the delay in certain scenarios. This book describes accurate but conservative methods for computing delay variation due to coupling. Furthermore, most of these methods are computationally efficient enough to be employed in a static timing analysis tool for complex integrated digital circuits. To achieve accuracy, a more accurate computation of the Miller factor is derived. To achieve both computational efficiency and accuracy, a variety of mechanisms for pruning the search space are detailed, including: -Spatial pruning - reducing aggressors to those in physical proximity, -Electrical pruning - reducing aggressors by electrical strength, -Temporal pruning - reducing aggressors using timing windows, -Functional pruning - reducing aggressors by Boolean functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits and Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer-Aided Engineering (CAD, CAE) and Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer-aided engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuits</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirkpatrick, Desmond A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keutzer, Kurt</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781402080913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b117251</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030538376</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b117251</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b117251</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045148677 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:01Z |
institution | BVB |
isbn | 9781402080920 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030538376 |
oclc_num | 1050938558 |
open_access_boolean | |
owner | DE-573 DE-634 |
owner_facet | DE-573 DE-634 |
physical | 1 Online-Ressource (XVIII, 113 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_2000/2004 ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer US |
record_format | marc |
spelling | Chen, Pinhong Verfasser aut Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs by Pinhong Chen, Desmond A. Kirkpatrick, Kurt Keutzer Boston, MA Springer US 2004 1 Online-Ressource (XVIII, 113 p) txt rdacontent c rdamedia cr rdacarrier As the feature size decreases in deep sub-micron designs, coupling capacitance becomes the dominant factor in total capacitance. The resulting crosstalk noise may be responsible for signal integrity issues and significant timing variation. Traditionally, static timing analysis tools have ignored cross coupling effects between wires altogether. Newer tools simply approximate the coupling capacitance by a 2X Miller factor in order to compute the worst case delay. The latter approach not only reduces delay calculation accuracy, but can also be shown to underestimate the delay in certain scenarios. This book describes accurate but conservative methods for computing delay variation due to coupling. Furthermore, most of these methods are computationally efficient enough to be employed in a static timing analysis tool for complex integrated digital circuits. To achieve accuracy, a more accurate computation of the Miller factor is derived. To achieve both computational efficiency and accuracy, a variety of mechanisms for pruning the search space are detailed, including: -Spatial pruning - reducing aggressors to those in physical proximity, -Electrical pruning - reducing aggressors by electrical strength, -Temporal pruning - reducing aggressors using timing windows, -Functional pruning - reducing aggressors by Boolean functional analysis Engineering Circuits and Systems Electrical Engineering Computer-Aided Engineering (CAD, CAE) and Design Computer-aided engineering Electrical engineering Electronic circuits Kirkpatrick, Desmond A. aut Keutzer, Kurt aut Erscheint auch als Druck-Ausgabe 9781402080913 https://doi.org/10.1007/b117251 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chen, Pinhong Kirkpatrick, Desmond A. Keutzer, Kurt Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs Engineering Circuits and Systems Electrical Engineering Computer-Aided Engineering (CAD, CAE) and Design Computer-aided engineering Electrical engineering Electronic circuits |
title | Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs |
title_auth | Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs |
title_exact_search | Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs |
title_full | Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs by Pinhong Chen, Desmond A. Kirkpatrick, Kurt Keutzer |
title_fullStr | Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs by Pinhong Chen, Desmond A. Kirkpatrick, Kurt Keutzer |
title_full_unstemmed | Static Crosstalk-Noise Analysis For Deep Sub-Micron Digital Designs by Pinhong Chen, Desmond A. Kirkpatrick, Kurt Keutzer |
title_short | Static Crosstalk-Noise Analysis |
title_sort | static crosstalk noise analysis for deep sub micron digital designs |
title_sub | For Deep Sub-Micron Digital Designs |
topic | Engineering Circuits and Systems Electrical Engineering Computer-Aided Engineering (CAD, CAE) and Design Computer-aided engineering Electrical engineering Electronic circuits |
topic_facet | Engineering Circuits and Systems Electrical Engineering Computer-Aided Engineering (CAD, CAE) and Design Computer-aided engineering Electrical engineering Electronic circuits |
url | https://doi.org/10.1007/b117251 |
work_keys_str_mv | AT chenpinhong staticcrosstalknoiseanalysisfordeepsubmicrondigitaldesigns AT kirkpatrickdesmonda staticcrosstalknoiseanalysisfordeepsubmicrondigitaldesigns AT keutzerkurt staticcrosstalknoiseanalysisfordeepsubmicrondigitaldesigns |