Dynamic Fuzzy Machine Learning:
Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors car...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ;Boston
De Gruyter
[2017]
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHI01 FHM01 FHR01 FKE01 FLA01 FWS01 FWS02 UBY01 UPA01 FCO01 Volltext |
Zusammenfassung: | Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jan 2018) |
Beschreibung: | 1 Online-Ressource (xiv, 324 Seiten) |
ISBN: | 9783110520651 |
DOI: | 10.1515/9783110520651 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044744288 | ||
003 | DE-604 | ||
005 | 20201223 | ||
007 | cr|uuu---uuuuu | ||
008 | 180202s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783110520651 |c Online |9 978-3-11-052065-1 | ||
024 | 7 | |a 10.1515/9783110520651 |2 doi | |
035 | |a (ZDB-23-DGG)9783110520651 | ||
035 | |a (OCoLC)1022101027 | ||
035 | |a (DE-599)BVBBV044744288 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-739 |a DE-863 |a DE-862 |a DE-573 |a DE-M347 |a DE-1046 |a DE-898 |a DE-1043 |a DE-706 |a DE-858 | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Li, Fanzhang |0 (DE-588)1148670343 |4 aut | |
245 | 1 | 0 | |a Dynamic Fuzzy Machine Learning |c Fanzhang Li, Li Zhang, Zhao Zhang |
264 | 1 | |a Berlin ;Boston |b De Gruyter |c [2017] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (xiv, 324 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jan 2018) | ||
520 | |a Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning | ||
546 | |a In English | ||
650 | 0 | 7 | |a Dynamisches Modell |0 (DE-588)4150932-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fuzzy-Menge |0 (DE-588)4061868-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informationstechnik |0 (DE-588)4026926-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Informationstechnik |0 (DE-588)4026926-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 1 | |a Fuzzy-Menge |0 (DE-588)4061868-7 |D s |
689 | 1 | 2 | |a Dynamisches Modell |0 (DE-588)4150932-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zhang, Li |0 (DE-588)1019056398 |4 aut | |
700 | 1 | |a Zhang, Zhao |0 (DE-588)1066750432 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-051870-2 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110520651 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DEI | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030140074 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FHI01 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FHM01 |p ZDB-23-DEI |q ZDB-23-DEI17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FHR01 |p ZDB-23-DEI |q FHR_ZDB_23_DEI17 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FWS01 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FWS02 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l UBY01 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110520651 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 692803 |
---|---|
_version_ | 1806184103576338432 |
any_adam_object | |
author | Li, Fanzhang Zhang, Li Zhang, Zhao |
author_GND | (DE-588)1148670343 (DE-588)1019056398 (DE-588)1066750432 |
author_facet | Li, Fanzhang Zhang, Li Zhang, Zhao |
author_role | aut aut aut |
author_sort | Li, Fanzhang |
author_variant | f l fl l z lz z z zz |
building | Verbundindex |
bvnumber | BV044744288 |
classification_rvk | ST 330 |
collection | ZDB-23-DGG ZDB-23-DEI |
ctrlnum | (ZDB-23-DGG)9783110520651 (OCoLC)1022101027 (DE-599)BVBBV044744288 |
discipline | Informatik |
doi_str_mv | 10.1515/9783110520651 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04886nmm a2200721zc 4500</leader><controlfield tag="001">BV044744288</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201223 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180202s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110520651</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-11-052065-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110520651</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110520651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1022101027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044744288</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Fanzhang</subfield><subfield code="0">(DE-588)1148670343</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Fuzzy Machine Learning</subfield><subfield code="c">Fanzhang Li, Li Zhang, Zhao Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 324 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jan 2018)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches Modell</subfield><subfield code="0">(DE-588)4150932-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationstechnik</subfield><subfield code="0">(DE-588)4026926-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informationstechnik</subfield><subfield code="0">(DE-588)4026926-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Fuzzy-Menge</subfield><subfield code="0">(DE-588)4061868-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Dynamisches Modell</subfield><subfield code="0">(DE-588)4150932-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Li</subfield><subfield code="0">(DE-588)1019056398</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhao</subfield><subfield code="0">(DE-588)1066750432</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-051870-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DEI</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030140074</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">ZDB-23-DEI17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">FHR_ZDB_23_DEI17</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110520651</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044744288 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T13:23:10Z |
institution | BVB |
isbn | 9783110520651 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030140074 |
oclc_num | 1022101027 |
open_access_boolean | |
owner | DE-Aug4 DE-859 DE-860 DE-739 DE-739 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-573 DE-M347 DE-1046 DE-898 DE-BY-UBR DE-1043 DE-706 DE-858 |
owner_facet | DE-Aug4 DE-859 DE-860 DE-739 DE-739 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-573 DE-M347 DE-1046 DE-898 DE-BY-UBR DE-1043 DE-706 DE-858 |
physical | 1 Online-Ressource (xiv, 324 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DEI ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DEI ZDB-23-DEI17 ZDB-23-DEI FHR_ZDB_23_DEI17 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG ZDB-23-DGG FCO_PDA_DGG |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | De Gruyter |
record_format | marc |
spellingShingle | Li, Fanzhang Zhang, Li Zhang, Zhao Dynamic Fuzzy Machine Learning Dynamisches Modell (DE-588)4150932-8 gnd Fuzzy-Menge (DE-588)4061868-7 gnd Informationstechnik (DE-588)4026926-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4150932-8 (DE-588)4061868-7 (DE-588)4026926-7 (DE-588)4193754-5 (DE-588)4033447-8 |
title | Dynamic Fuzzy Machine Learning |
title_auth | Dynamic Fuzzy Machine Learning |
title_exact_search | Dynamic Fuzzy Machine Learning |
title_full | Dynamic Fuzzy Machine Learning Fanzhang Li, Li Zhang, Zhao Zhang |
title_fullStr | Dynamic Fuzzy Machine Learning Fanzhang Li, Li Zhang, Zhao Zhang |
title_full_unstemmed | Dynamic Fuzzy Machine Learning Fanzhang Li, Li Zhang, Zhao Zhang |
title_short | Dynamic Fuzzy Machine Learning |
title_sort | dynamic fuzzy machine learning |
topic | Dynamisches Modell (DE-588)4150932-8 gnd Fuzzy-Menge (DE-588)4061868-7 gnd Informationstechnik (DE-588)4026926-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Dynamisches Modell Fuzzy-Menge Informationstechnik Maschinelles Lernen Künstliche Intelligenz |
url | https://doi.org/10.1515/9783110520651 |
work_keys_str_mv | AT lifanzhang dynamicfuzzymachinelearning AT zhangli dynamicfuzzymachinelearning AT zhangzhao dynamicfuzzymachinelearning |