The geometric Hopf invariant and surgery theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2017]
|
Schriftenreihe: | Springer monographs in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XVI, 397 Seiten, 1 illus. in color) |
ISBN: | 9783319713069 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-319-71306-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044740395 | ||
003 | DE-604 | ||
005 | 20220209 | ||
007 | cr|uuu---uuuuu | ||
008 | 180201s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783319713069 |c Online |9 978-3-319-71306-9 | ||
024 | 7 | |a 10.1007/978-3-319-71306-9 |2 doi | |
035 | |a (ZDB-2-SMA)9783319713069 | ||
035 | |a (OCoLC)1021380926 | ||
035 | |a (DE-599)BVBBV044740395 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Crabb, Michael C. |d 1949- |e Verfasser |0 (DE-588)120071258 |4 aut | |
245 | 1 | 0 | |a The geometric Hopf invariant and surgery theory |c Michael Crabb, Andrew Ranicki |
264 | 1 | |a Cham |b Springer |c [2017] | |
300 | |a 1 Online-Ressource (XVI, 397 Seiten, 1 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer monographs in mathematics |x 1439-7382 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Complex manifolds | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
700 | 1 | |a Ranicki, Andrew |d 1948-2018 |e Verfasser |0 (DE-588)120140500 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-71305-2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-71306-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030136231 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-71306-9 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 679371 |
---|---|
_version_ | 1806183005813735424 |
any_adam_object | |
author | Crabb, Michael C. 1949- Ranicki, Andrew 1948-2018 |
author_GND | (DE-588)120071258 (DE-588)120140500 |
author_facet | Crabb, Michael C. 1949- Ranicki, Andrew 1948-2018 |
author_role | aut aut |
author_sort | Crabb, Michael C. 1949- |
author_variant | m c c mc mcc a r ar |
building | Verbundindex |
bvnumber | BV044740395 |
classification_rvk | SK 260 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783319713069 (OCoLC)1021380926 (DE-599)BVBBV044740395 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-71306-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02864nmm a2200613zc 4500</leader><controlfield tag="001">BV044740395</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220209 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180201s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319713069</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-71306-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-71306-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319713069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1021380926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044740395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crabb, Michael C.</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120071258</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometric Hopf invariant and surgery theory</subfield><subfield code="c">Michael Crabb, Andrew Ranicki</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 397 Seiten, 1 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer monographs in mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ranicki, Andrew</subfield><subfield code="d">1948-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120140500</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-71305-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030136231</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-71306-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044740395 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T13:05:42Z |
institution | BVB |
isbn | 9783319713069 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030136231 |
oclc_num | 1021380926 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 |
physical | 1 Online-Ressource (XVI, 397 Seiten, 1 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series2 | Springer monographs in mathematics |
spellingShingle | Crabb, Michael C. 1949- Ranicki, Andrew 1948-2018 The geometric Hopf invariant and surgery theory Mathematics Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) |
title | The geometric Hopf invariant and surgery theory |
title_auth | The geometric Hopf invariant and surgery theory |
title_exact_search | The geometric Hopf invariant and surgery theory |
title_full | The geometric Hopf invariant and surgery theory Michael Crabb, Andrew Ranicki |
title_fullStr | The geometric Hopf invariant and surgery theory Michael Crabb, Andrew Ranicki |
title_full_unstemmed | The geometric Hopf invariant and surgery theory Michael Crabb, Andrew Ranicki |
title_short | The geometric Hopf invariant and surgery theory |
title_sort | the geometric hopf invariant and surgery theory |
topic | Mathematics Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) |
topic_facet | Mathematics Algebraic topology Manifolds (Mathematics) Complex manifolds Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) |
url | https://doi.org/10.1007/978-3-319-71306-9 |
work_keys_str_mv | AT crabbmichaelc thegeometrichopfinvariantandsurgerytheory AT ranickiandrew thegeometrichopfinvariantandsurgerytheory |