The hyperboloidal foliation method:
The "Hyperboloidal Foliation Method" introduced in this monograph is based on a (3 + 1) foliation of Minkowski spacetime by hyperboloidal hypersurfaces. This method allows the authors to establish global-in-time existence results for systems of nonlinear wave equations posed on a curved sp...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2014
|
Schriftenreihe: | Series in applied and computational mathematics
vol. 2 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The "Hyperboloidal Foliation Method" introduced in this monograph is based on a (3 + 1) foliation of Minkowski spacetime by hyperboloidal hypersurfaces. This method allows the authors to establish global-in-time existence results for systems of nonlinear wave equations posed on a curved spacetime. It also allows to encompass the wave equation and the Klein-Gordon equation in a unified framework and, consequently, to establish a well-posedness theory for a broad class of systems of nonlinear wave-Klein-Gordon equations. This book requires certain natural (null) conditions on nonlinear interactions, which are much less restrictive that the ones assumed in the existing literature. This theory applies to systems arising in mathematical physics involving a massive scalar field, such as the Dirac-Klein-Gordon systems |
Beschreibung: | ix, 149 p. ill |
ISBN: | 9789814641630 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044640565 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814641630 |9 978-981-4641-63-0 | ||
024 | 7 | |a 10.1142/9427 |2 doi | |
035 | |a (ZDB-124-WOP)00006319 | ||
035 | |a (OCoLC)988733415 | ||
035 | |a (DE-599)BVBBV044640565 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.1133 |2 22 | |
100 | 1 | |a LeFloch, Philippe G. |d 1962- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The hyperboloidal foliation method |c Philippe G. LeFloch, Yue Ma |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2014 | |
300 | |a ix, 149 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in applied and computational mathematics |v vol. 2 | |
520 | |a The "Hyperboloidal Foliation Method" introduced in this monograph is based on a (3 + 1) foliation of Minkowski spacetime by hyperboloidal hypersurfaces. This method allows the authors to establish global-in-time existence results for systems of nonlinear wave equations posed on a curved spacetime. It also allows to encompass the wave equation and the Klein-Gordon equation in a unified framework and, consequently, to establish a well-posedness theory for a broad class of systems of nonlinear wave-Klein-Gordon equations. This book requires certain natural (null) conditions on nonlinear interactions, which are much less restrictive that the ones assumed in the existing literature. This theory applies to systems arising in mathematical physics involving a massive scalar field, such as the Dirac-Klein-Gordon systems | ||
650 | 4 | |a Nonlinear wave equations | |
650 | 4 | |a Klein-Gordon equation | |
650 | 4 | |a Nonlinear systems | |
650 | 0 | 7 | |a Blätterung |0 (DE-588)4007006-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Geometrie |0 (DE-588)4161041-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Blätterung |0 (DE-588)4007006-2 |D s |
689 | 0 | 1 | |a Hyperbolische Geometrie |0 (DE-588)4161041-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ma, Yue |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814641623 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/9427#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030038537 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/9427#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178060433424384 |
---|---|
any_adam_object | |
author | LeFloch, Philippe G. 1962- |
author_facet | LeFloch, Philippe G. 1962- |
author_role | aut |
author_sort | LeFloch, Philippe G. 1962- |
author_variant | p g l pg pgl |
building | Verbundindex |
bvnumber | BV044640565 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00006319 (OCoLC)988733415 (DE-599)BVBBV044640565 |
dewey-full | 530.1133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1133 |
dewey-search | 530.1133 |
dewey-sort | 3530.1133 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02634nmm a2200481zcb4500</leader><controlfield tag="001">BV044640565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814641630</subfield><subfield code="9">978-981-4641-63-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/9427</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00006319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)988733415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044640565</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1133</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">LeFloch, Philippe G.</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The hyperboloidal foliation method</subfield><subfield code="c">Philippe G. LeFloch, Yue Ma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 149 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in applied and computational mathematics</subfield><subfield code="v">vol. 2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The "Hyperboloidal Foliation Method" introduced in this monograph is based on a (3 + 1) foliation of Minkowski spacetime by hyperboloidal hypersurfaces. This method allows the authors to establish global-in-time existence results for systems of nonlinear wave equations posed on a curved spacetime. It also allows to encompass the wave equation and the Klein-Gordon equation in a unified framework and, consequently, to establish a well-posedness theory for a broad class of systems of nonlinear wave-Klein-Gordon equations. This book requires certain natural (null) conditions on nonlinear interactions, which are much less restrictive that the ones assumed in the existing literature. This theory applies to systems arising in mathematical physics involving a massive scalar field, such as the Dirac-Klein-Gordon systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear wave equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Klein-Gordon equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blätterung</subfield><subfield code="0">(DE-588)4007006-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Geometrie</subfield><subfield code="0">(DE-588)4161041-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Blätterung</subfield><subfield code="0">(DE-588)4007006-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hyperbolische Geometrie</subfield><subfield code="0">(DE-588)4161041-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Yue</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814641623</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9427#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030038537</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/9427#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044640565 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:58Z |
institution | BVB |
isbn | 9789814641630 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030038537 |
oclc_num | 988733415 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | ix, 149 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in applied and computational mathematics |
spelling | LeFloch, Philippe G. 1962- Verfasser aut The hyperboloidal foliation method Philippe G. LeFloch, Yue Ma Singapore World Scientific Pub. Co. c2014 ix, 149 p. ill txt rdacontent c rdamedia cr rdacarrier Series in applied and computational mathematics vol. 2 The "Hyperboloidal Foliation Method" introduced in this monograph is based on a (3 + 1) foliation of Minkowski spacetime by hyperboloidal hypersurfaces. This method allows the authors to establish global-in-time existence results for systems of nonlinear wave equations posed on a curved spacetime. It also allows to encompass the wave equation and the Klein-Gordon equation in a unified framework and, consequently, to establish a well-posedness theory for a broad class of systems of nonlinear wave-Klein-Gordon equations. This book requires certain natural (null) conditions on nonlinear interactions, which are much less restrictive that the ones assumed in the existing literature. This theory applies to systems arising in mathematical physics involving a massive scalar field, such as the Dirac-Klein-Gordon systems Nonlinear wave equations Klein-Gordon equation Nonlinear systems Blätterung (DE-588)4007006-2 gnd rswk-swf Hyperbolische Geometrie (DE-588)4161041-6 gnd rswk-swf Blätterung (DE-588)4007006-2 s Hyperbolische Geometrie (DE-588)4161041-6 s 1\p DE-604 Ma, Yue Sonstige oth Erscheint auch als Druck-Ausgabe 9789814641623 http://www.worldscientific.com/worldscibooks/10.1142/9427#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | LeFloch, Philippe G. 1962- The hyperboloidal foliation method Nonlinear wave equations Klein-Gordon equation Nonlinear systems Blätterung (DE-588)4007006-2 gnd Hyperbolische Geometrie (DE-588)4161041-6 gnd |
subject_GND | (DE-588)4007006-2 (DE-588)4161041-6 |
title | The hyperboloidal foliation method |
title_auth | The hyperboloidal foliation method |
title_exact_search | The hyperboloidal foliation method |
title_full | The hyperboloidal foliation method Philippe G. LeFloch, Yue Ma |
title_fullStr | The hyperboloidal foliation method Philippe G. LeFloch, Yue Ma |
title_full_unstemmed | The hyperboloidal foliation method Philippe G. LeFloch, Yue Ma |
title_short | The hyperboloidal foliation method |
title_sort | the hyperboloidal foliation method |
topic | Nonlinear wave equations Klein-Gordon equation Nonlinear systems Blätterung (DE-588)4007006-2 gnd Hyperbolische Geometrie (DE-588)4161041-6 gnd |
topic_facet | Nonlinear wave equations Klein-Gordon equation Nonlinear systems Blätterung Hyperbolische Geometrie |
url | http://www.worldscientific.com/worldscibooks/10.1142/9427#t=toc |
work_keys_str_mv | AT leflochphilippeg thehyperboloidalfoliationmethod AT mayue thehyperboloidalfoliationmethod |