Applications of contact geometry and topology in physics:
Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introducti...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2013
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text |
Beschreibung: | xiv, 475 p. ill |
ISBN: | 9789814412094 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638964 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814412094 |c electronic bk. |9 978-981-4412-09-4 | ||
024 | 7 | |a 10.1142/8514 |2 doi | |
035 | |a (ZDB-124-WOP)00003144 | ||
035 | |a (OCoLC)1012732588 | ||
035 | |a (DE-599)BVBBV044638964 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.15636 |2 22 | |
100 | 1 | |a Kholodenko, Arkady Leonidovich |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applications of contact geometry and topology in physics |c Arkady L Kholodenko |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2013 | |
300 | |a xiv, 475 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text | ||
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814412087 (hardcover : alk. paper) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8514#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036936 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8514#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056420524032 |
---|---|
any_adam_object | |
author | Kholodenko, Arkady Leonidovich 1948- |
author_facet | Kholodenko, Arkady Leonidovich 1948- |
author_role | aut |
author_sort | Kholodenko, Arkady Leonidovich 1948- |
author_variant | a l k al alk |
building | Verbundindex |
bvnumber | BV044638964 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003144 (OCoLC)1012732588 (DE-599)BVBBV044638964 |
dewey-full | 530.15636 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15636 |
dewey-search | 530.15636 |
dewey-sort | 3530.15636 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03657nmm a2200481zc 4500</leader><controlfield tag="001">BV044638964</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814412094</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4412-09-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012732588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638964</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15636</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kholodenko, Arkady Leonidovich</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of contact geometry and topology in physics</subfield><subfield code="c">Arkady L Kholodenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 475 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814412087 (hardcover : alk. paper)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8514#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036936</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8514#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638964 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814412094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036936 |
oclc_num | 1012732588 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 475 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Kholodenko, Arkady Leonidovich 1948- Verfasser aut Applications of contact geometry and topology in physics Arkady L Kholodenko Singapore World Scientific Pub. Co. c2013 xiv, 475 p. ill txt rdacontent c rdamedia cr rdacarrier Although contact geometry and topology is briefly discussed in V I Arnold's book "Mathematical Methods of Classical Mechanics" (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges "An Introduction to Contact Topology" (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph "Contact Geometry and Nonlinear Differential Equations" (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text Geometry Topology Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Geometrie (DE-588)4020236-7 s Topologie (DE-588)4060425-1 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789814412087 (hardcover : alk. paper) http://www.worldscientific.com/worldscibooks/10.1142/8514#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kholodenko, Arkady Leonidovich 1948- Applications of contact geometry and topology in physics Geometry Topology Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4020236-7 (DE-588)4060425-1 |
title | Applications of contact geometry and topology in physics |
title_auth | Applications of contact geometry and topology in physics |
title_exact_search | Applications of contact geometry and topology in physics |
title_full | Applications of contact geometry and topology in physics Arkady L Kholodenko |
title_fullStr | Applications of contact geometry and topology in physics Arkady L Kholodenko |
title_full_unstemmed | Applications of contact geometry and topology in physics Arkady L Kholodenko |
title_short | Applications of contact geometry and topology in physics |
title_sort | applications of contact geometry and topology in physics |
topic | Geometry Topology Mathematical physics Mathematische Physik (DE-588)4037952-8 gnd Geometrie (DE-588)4020236-7 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Geometry Topology Mathematical physics Mathematische Physik Geometrie Topologie |
url | http://www.worldscientific.com/worldscibooks/10.1142/8514#t=toc |
work_keys_str_mv | AT kholodenkoarkadyleonidovich applicationsofcontactgeometryandtopologyinphysics |