Differential geometry applied to dynamical systems:

This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory - or the flow - may be anal...

Full description

Saved in:
Bibliographic Details
Main Author: Ginoux, Jean-Marc (Author)
Format: Electronic eBook
Language:English
Published: Singapore World Scientific c2009
Series:World scientific series on nonlinear science. Series A. v. 66
Subjects:
Online Access:FHN01
Volltext
Summary:This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory - or the flow - may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes). In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem
Physical Description:xxvii, 312 p. ill. (some col.)
ISBN:9789814277150

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text