Mathematical Feynman path integrals and their applications:
Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2009
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals |
Beschreibung: | viii, 216 p |
ISBN: | 9789812836915 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637129 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789812836915 |c electronic bk. |9 978-981-283-691-5 | ||
024 | 7 | |a 10.1142/7104 |2 doi | |
035 | |a (ZDB-124-WOP)00002096 | ||
035 | |a (OCoLC)1012663245 | ||
035 | |a (DE-599)BVBBV044637129 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.43 |2 22 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Mazzucchi, Sonia |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Feynman path integrals and their applications |c Sonia Mazzucchi |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2009 | |
300 | |a viii, 216 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals | ||
650 | 4 | |a Feynman integrals | |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812836908 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981283690X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7104#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035101 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7104#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052482072576 |
---|---|
any_adam_object | |
author | Mazzucchi, Sonia |
author_facet | Mazzucchi, Sonia |
author_role | aut |
author_sort | Mazzucchi, Sonia |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV044637129 |
classification_rvk | SK 600 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002096 (OCoLC)1012663245 (DE-599)BVBBV044637129 |
dewey-full | 515.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.43 |
dewey-search | 515.43 |
dewey-sort | 3515.43 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02699nmm a2200433zc 4500</leader><controlfield tag="001">BV044637129</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812836915</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-691-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002096 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012663245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637129</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mazzucchi, Sonia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Feynman path integrals and their applications</subfield><subfield code="c">Sonia Mazzucchi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 216 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman integrals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812836908</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981283690X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7104#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035101</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7104#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637129 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812836915 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035101 |
oclc_num | 1012663245 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 216 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Mazzucchi, Sonia Verfasser aut Mathematical Feynman path integrals and their applications Sonia Mazzucchi Singapore World Scientific Pub. Co. c2009 viii, 216 p txt rdacontent c rdamedia cr rdacarrier Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals Feynman integrals Pfadintegral (DE-588)4173973-5 gnd rswk-swf Pfadintegral (DE-588)4173973-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789812836908 Erscheint auch als Druck-Ausgabe 981283690X http://www.worldscientific.com/worldscibooks/10.1142/7104#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mazzucchi, Sonia Mathematical Feynman path integrals and their applications Feynman integrals Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4173973-5 |
title | Mathematical Feynman path integrals and their applications |
title_auth | Mathematical Feynman path integrals and their applications |
title_exact_search | Mathematical Feynman path integrals and their applications |
title_full | Mathematical Feynman path integrals and their applications Sonia Mazzucchi |
title_fullStr | Mathematical Feynman path integrals and their applications Sonia Mazzucchi |
title_full_unstemmed | Mathematical Feynman path integrals and their applications Sonia Mazzucchi |
title_short | Mathematical Feynman path integrals and their applications |
title_sort | mathematical feynman path integrals and their applications |
topic | Feynman integrals Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | Feynman integrals Pfadintegral |
url | http://www.worldscientific.com/worldscibooks/10.1142/7104#t=toc |
work_keys_str_mv | AT mazzucchisonia mathematicalfeynmanpathintegralsandtheirapplications |