Generalized Hamiltonian formalism for field theory: constraint systems
In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in me...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1995
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented |
Beschreibung: | viii, 155 p |
ISBN: | 9789812831484 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636893 | ||
003 | DE-604 | ||
005 | 20220517 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789812831484 |9 978-981-283-148-4 | ||
024 | 7 | |a 10.1142/2550 |2 doi | |
035 | |a (ZDB-124-WOP)00005155 | ||
035 | |a (OCoLC)1005227337 | ||
035 | |a (DE-599)BVBBV044636893 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.140151539 |2 22 | |
084 | |a UO 4020 |0 (DE-625)146239: |2 rvk | ||
100 | 1 | |a Sardanašvili, Gennadij A. |d 1950- |e Verfasser |0 (DE-588)14187810X |4 aut | |
245 | 1 | 0 | |a Generalized Hamiltonian formalism for field theory |b constraint systems |c [G. Sardanashvily] |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1995 | |
300 | |a viii, 155 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented | ||
650 | 4 | |a Hamiltonian systems | |
650 | 4 | |a Lagrange equations | |
650 | 4 | |a Field theory (Physics) / Mathematics | |
650 | 4 | |a Constraints (Physics) / Mathematics | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 0 | 7 | |a Lagrange-Formalismus |0 (DE-588)4316154-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |D s |
689 | 0 | 2 | |a Lagrange-Formalismus |0 (DE-588)4316154-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810220457 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810220456 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2550#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034866 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2550#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051744923648 |
---|---|
any_adam_object | |
author | Sardanašvili, Gennadij A. 1950- |
author_GND | (DE-588)14187810X |
author_facet | Sardanašvili, Gennadij A. 1950- |
author_role | aut |
author_sort | Sardanašvili, Gennadij A. 1950- |
author_variant | g a s ga gas |
building | Verbundindex |
bvnumber | BV044636893 |
classification_rvk | UO 4020 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005155 (OCoLC)1005227337 (DE-599)BVBBV044636893 |
dewey-full | 530.140151539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.140151539 |
dewey-search | 530.140151539 |
dewey-sort | 3530.140151539 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03033nmm a2200517zc 4500</leader><controlfield tag="001">BV044636893</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220517 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812831484</subfield><subfield code="9">978-981-283-148-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2550</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005227337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636893</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.140151539</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4020</subfield><subfield code="0">(DE-625)146239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sardanašvili, Gennadij A.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14187810X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Hamiltonian formalism for field theory</subfield><subfield code="b">constraint systems</subfield><subfield code="c">[G. Sardanashvily]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 155 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics) / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constraints (Physics) / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Formalismus</subfield><subfield code="0">(DE-588)4316154-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lagrange-Formalismus</subfield><subfield code="0">(DE-588)4316154-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810220457</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810220456</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2550#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034866</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2550#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636893 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812831484 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034866 |
oclc_num | 1005227337 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 155 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Sardanašvili, Gennadij A. 1950- Verfasser (DE-588)14187810X aut Generalized Hamiltonian formalism for field theory constraint systems [G. Sardanashvily] Singapore World Scientific Pub. Co. c1995 viii, 155 p txt rdacontent c rdamedia cr rdacarrier In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented Hamiltonian systems Lagrange equations Field theory (Physics) / Mathematics Constraints (Physics) / Mathematics Manifolds (Mathematics) Lagrange-Formalismus (DE-588)4316154-6 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Hamilton-Formalismus (DE-588)4376155-0 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Hamilton-Formalismus (DE-588)4376155-0 s Lagrange-Formalismus (DE-588)4316154-6 s DE-604 Erscheint auch als Druck-Ausgabe 9789810220457 Erscheint auch als Druck-Ausgabe 9810220456 http://www.worldscientific.com/worldscibooks/10.1142/2550#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sardanašvili, Gennadij A. 1950- Generalized Hamiltonian formalism for field theory constraint systems Hamiltonian systems Lagrange equations Field theory (Physics) / Mathematics Constraints (Physics) / Mathematics Manifolds (Mathematics) Lagrange-Formalismus (DE-588)4316154-6 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd |
subject_GND | (DE-588)4316154-6 (DE-588)4047984-5 (DE-588)4376155-0 |
title | Generalized Hamiltonian formalism for field theory constraint systems |
title_auth | Generalized Hamiltonian formalism for field theory constraint systems |
title_exact_search | Generalized Hamiltonian formalism for field theory constraint systems |
title_full | Generalized Hamiltonian formalism for field theory constraint systems [G. Sardanashvily] |
title_fullStr | Generalized Hamiltonian formalism for field theory constraint systems [G. Sardanashvily] |
title_full_unstemmed | Generalized Hamiltonian formalism for field theory constraint systems [G. Sardanashvily] |
title_short | Generalized Hamiltonian formalism for field theory |
title_sort | generalized hamiltonian formalism for field theory constraint systems |
title_sub | constraint systems |
topic | Hamiltonian systems Lagrange equations Field theory (Physics) / Mathematics Constraints (Physics) / Mathematics Manifolds (Mathematics) Lagrange-Formalismus (DE-588)4316154-6 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd |
topic_facet | Hamiltonian systems Lagrange equations Field theory (Physics) / Mathematics Constraints (Physics) / Mathematics Manifolds (Mathematics) Lagrange-Formalismus Quantenfeldtheorie Hamilton-Formalismus |
url | http://www.worldscientific.com/worldscibooks/10.1142/2550#t=toc |
work_keys_str_mv | AT sardanasviligennadija generalizedhamiltonianformalismforfieldtheoryconstraintsystems |