Affine Bernstein problems and Monge-Ampere equations:
In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampere equations. From...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2010
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampere equations. From the methodical point of view, it introduces the solution of certain Monge-Ampere equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings |
Beschreibung: | xii, 180 p. ill |
ISBN: | 9789812814173 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636394 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789812814173 |c electronic bk. |9 978-981-281-417-3 | ||
024 | 7 | |a 10.1142/6835 |2 doi | |
035 | |a (ZDB-124-WOP)00000939 | ||
035 | |a (OCoLC)838375669 | ||
035 | |a (DE-599)BVBBV044636394 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.36 |2 22 | |
245 | 1 | 0 | |a Affine Bernstein problems and Monge-Ampere equations |c An-Min Li ... [et al.] |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2010 | |
300 | |a xii, 180 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampere equations. From the methodical point of view, it introduces the solution of certain Monge-Ampere equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings | ||
650 | 4 | |a Affine differential geometry | |
650 | 4 | |a Monge-Ampere equations | |
650 | 0 | 7 | |a Monge-Ampère-Differentialgleichung |0 (DE-588)4253327-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Monge-Ampère-Differentialgleichung |0 (DE-588)4253327-2 |D s |
689 | 0 | 1 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Li, An-Min |d 1946- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812814166 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812814167 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/6835#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034365 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/6835#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050709979136 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV044636394 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00000939 (OCoLC)838375669 (DE-599)BVBBV044636394 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02782nmm a2200457zc 4500</leader><controlfield tag="001">BV044636394</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812814173</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-417-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/6835</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00000939 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838375669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636394</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine Bernstein problems and Monge-Ampere equations</subfield><subfield code="c">An-Min Li ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 180 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampere equations. From the methodical point of view, it introduces the solution of certain Monge-Ampere equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Affine differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monge-Ampere equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monge-Ampère-Differentialgleichung</subfield><subfield code="0">(DE-588)4253327-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monge-Ampère-Differentialgleichung</subfield><subfield code="0">(DE-588)4253327-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, An-Min</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812814166</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812814167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6835#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034365</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6835#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636394 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812814173 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034365 |
oclc_num | 838375669 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xii, 180 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Affine Bernstein problems and Monge-Ampere equations An-Min Li ... [et al.] Singapore World Scientific Pub. Co. c2010 xii, 180 p. ill txt rdacontent c rdamedia cr rdacarrier In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-Ampere equations. From the methodical point of view, it introduces the solution of certain Monge-Ampere equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings Affine differential geometry Monge-Ampere equations Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 gnd rswk-swf Monge-Ampère-Differentialgleichung (DE-588)4253327-2 s Globale Differentialgeometrie (DE-588)4021286-5 s 1\p DE-604 Li, An-Min 1946- Sonstige oth Erscheint auch als Druck-Ausgabe 9789812814166 Erscheint auch als Druck-Ausgabe 9812814167 http://www.worldscientific.com/worldscibooks/10.1142/6835#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Affine Bernstein problems and Monge-Ampere equations Affine differential geometry Monge-Ampere equations Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd |
subject_GND | (DE-588)4253327-2 (DE-588)4021286-5 |
title | Affine Bernstein problems and Monge-Ampere equations |
title_auth | Affine Bernstein problems and Monge-Ampere equations |
title_exact_search | Affine Bernstein problems and Monge-Ampere equations |
title_full | Affine Bernstein problems and Monge-Ampere equations An-Min Li ... [et al.] |
title_fullStr | Affine Bernstein problems and Monge-Ampere equations An-Min Li ... [et al.] |
title_full_unstemmed | Affine Bernstein problems and Monge-Ampere equations An-Min Li ... [et al.] |
title_short | Affine Bernstein problems and Monge-Ampere equations |
title_sort | affine bernstein problems and monge ampere equations |
topic | Affine differential geometry Monge-Ampere equations Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd |
topic_facet | Affine differential geometry Monge-Ampere equations Monge-Ampère-Differentialgleichung Globale Differentialgeometrie |
url | http://www.worldscientific.com/worldscibooks/10.1142/6835#t=toc |
work_keys_str_mv | AT lianmin affinebernsteinproblemsandmongeampereequations |