CNN: a paradigm for complexity
Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Netw...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1998
|
Schriftenreihe: | World scientific series on nonlinear science. Series A, Monographs and treatises
v. 31 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Turing machine and includes cellular automata and lattice dynamical systems as special cases.While the CNN paradigm is an example of REDUCTIONISM par excellence, the true origin of emergence and complexity is traced to a much deeper new concept called local activity. The numerous complex phenomena unified under this mathematically precise principle include self organization, dissipative structures, synergetics, order from disorder, far-from-thermodynamic equilibrium, collective behaviors, edge of chaos, etc.Written with a high level of exposition, this completely self-contained monograph is profusely illustrated with over 200 stunning color illustrations of emergent phenomena |
Beschreibung: | "Based on a lecture presented at a workshop entitled 'Visions of nonlinear science in the 21st century,' held in Seville, Spain on 26 June 1996"--Pref |
Beschreibung: | x, 320 p. ill. (chiefly col.) |
ISBN: | 9789812798589 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635966 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789812798589 |9 978-981-279-858-9 | ||
024 | 7 | |a 10.1142/3801 |2 doi | |
035 | |a (ZDB-124-WOP)00004638 | ||
035 | |a (OCoLC)1012678957 | ||
035 | |a (DE-599)BVBBV044635966 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 006.32 |2 22 | |
100 | 1 | |a Chua, Leon O. |d 1936- |e Verfasser |4 aut | |
245 | 1 | 0 | |a CNN |b a paradigm for complexity |c Leon O. Chua |
246 | 1 | 3 | |a Cellular neural networks |
246 | 1 | 3 | |a Paradigm for complexity |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1998 | |
300 | |a x, 320 p. |b ill. (chiefly col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World scientific series on nonlinear science. Series A, Monographs and treatises |v v. 31 | |
500 | |a "Based on a lecture presented at a workshop entitled 'Visions of nonlinear science in the 21st century,' held in Seville, Spain on 26 June 1996"--Pref | ||
520 | |a Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Turing machine and includes cellular automata and lattice dynamical systems as special cases.While the CNN paradigm is an example of REDUCTIONISM par excellence, the true origin of emergence and complexity is traced to a much deeper new concept called local activity. The numerous complex phenomena unified under this mathematically precise principle include self organization, dissipative structures, synergetics, order from disorder, far-from-thermodynamic equilibrium, collective behaviors, edge of chaos, etc.Written with a high level of exposition, this completely self-contained monograph is profusely illustrated with over 200 stunning color illustrations of emergent phenomena | ||
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Electric networks, Nonlinear | |
650 | 4 | |a Coupled problems (Complex systems) | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Cellular automata | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810234836 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981023483X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3801#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033938 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3801#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049697054720 |
---|---|
any_adam_object | |
author | Chua, Leon O. 1936- |
author_facet | Chua, Leon O. 1936- |
author_role | aut |
author_sort | Chua, Leon O. 1936- |
author_variant | l o c lo loc |
building | Verbundindex |
bvnumber | BV044635966 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004638 (OCoLC)1012678957 (DE-599)BVBBV044635966 |
dewey-full | 006.32 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.32 |
dewey-search | 006.32 |
dewey-sort | 16.32 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03162nmm a2200481zcb4500</leader><controlfield tag="001">BV044635966</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812798589</subfield><subfield code="9">978-981-279-858-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004638</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012678957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635966</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.32</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chua, Leon O.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CNN</subfield><subfield code="b">a paradigm for complexity</subfield><subfield code="c">Leon O. Chua</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Cellular neural networks</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Paradigm for complexity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 320 p.</subfield><subfield code="b">ill. (chiefly col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World scientific series on nonlinear science. Series A, Monographs and treatises</subfield><subfield code="v">v. 31</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Based on a lecture presented at a workshop entitled 'Visions of nonlinear science in the 21st century,' held in Seville, Spain on 26 June 1996"--Pref</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Turing machine and includes cellular automata and lattice dynamical systems as special cases.While the CNN paradigm is an example of REDUCTIONISM par excellence, the true origin of emergence and complexity is traced to a much deeper new concept called local activity. The numerous complex phenomena unified under this mathematically precise principle include self organization, dissipative structures, synergetics, order from disorder, far-from-thermodynamic equilibrium, collective behaviors, edge of chaos, etc.Written with a high level of exposition, this completely self-contained monograph is profusely illustrated with over 200 stunning color illustrations of emergent phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric networks, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled problems (Complex systems)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular automata</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810234836</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981023483X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3801#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033938</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3801#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635966 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812798589 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033938 |
oclc_num | 1012678957 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 320 p. ill. (chiefly col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World scientific series on nonlinear science. Series A, Monographs and treatises |
spelling | Chua, Leon O. 1936- Verfasser aut CNN a paradigm for complexity Leon O. Chua Cellular neural networks Paradigm for complexity Singapore World Scientific Pub. Co. c1998 x, 320 p. ill. (chiefly col.) txt rdacontent c rdamedia cr rdacarrier World scientific series on nonlinear science. Series A, Monographs and treatises v. 31 "Based on a lecture presented at a workshop entitled 'Visions of nonlinear science in the 21st century,' held in Seville, Spain on 26 June 1996"--Pref Revolutionary and original, this treatise presents a new paradigm of EMERGENCE and COMPLEXITY, with applications drawn from numerous disciplines, including artificial life, biology, chemistry, computation, physics, image processing, information science, etc.CNN is an acronym for Cellular Neural Networks when used in the context of brain science, or Cellular Nonlinear Networks, when used in the context of emergence and complexity. A CNN is modeled by cells and interactions: cells are defined as dynamical systems and interactions are defined via coupling laws. The CNN paradigm is a universal Turing machine and includes cellular automata and lattice dynamical systems as special cases.While the CNN paradigm is an example of REDUCTIONISM par excellence, the true origin of emergence and complexity is traced to a much deeper new concept called local activity. The numerous complex phenomena unified under this mathematically precise principle include self organization, dissipative structures, synergetics, order from disorder, far-from-thermodynamic equilibrium, collective behaviors, edge of chaos, etc.Written with a high level of exposition, this completely self-contained monograph is profusely illustrated with over 200 stunning color illustrations of emergent phenomena Neural networks (Computer science) Electric networks, Nonlinear Coupled problems (Complex systems) Nonlinear theories Computational complexity Cellular automata Erscheint auch als Druck-Ausgabe 9789810234836 Erscheint auch als Druck-Ausgabe 981023483X http://www.worldscientific.com/worldscibooks/10.1142/3801#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Chua, Leon O. 1936- CNN a paradigm for complexity Neural networks (Computer science) Electric networks, Nonlinear Coupled problems (Complex systems) Nonlinear theories Computational complexity Cellular automata |
title | CNN a paradigm for complexity |
title_alt | Cellular neural networks Paradigm for complexity |
title_auth | CNN a paradigm for complexity |
title_exact_search | CNN a paradigm for complexity |
title_full | CNN a paradigm for complexity Leon O. Chua |
title_fullStr | CNN a paradigm for complexity Leon O. Chua |
title_full_unstemmed | CNN a paradigm for complexity Leon O. Chua |
title_short | CNN |
title_sort | cnn a paradigm for complexity |
title_sub | a paradigm for complexity |
topic | Neural networks (Computer science) Electric networks, Nonlinear Coupled problems (Complex systems) Nonlinear theories Computational complexity Cellular automata |
topic_facet | Neural networks (Computer science) Electric networks, Nonlinear Coupled problems (Complex systems) Nonlinear theories Computational complexity Cellular automata |
url | http://www.worldscientific.com/worldscibooks/10.1142/3801#t=toc |
work_keys_str_mv | AT chualeono cnnaparadigmforcomplexity AT chualeono cellularneuralnetworks AT chualeono paradigmforcomplexity |