Algebraic theory of locally nilpotent derivations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
[2017]
|
Ausgabe: | Second edition |
Schriftenreihe: | Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups
7 |
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XXII, 319 Seiten) |
ISBN: | 9783662553503 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-55350-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044529726 | ||
003 | DE-604 | ||
005 | 20220208 | ||
007 | cr|uuu---uuuuu | ||
008 | 171010s2017 |||| o||u| ||||||eng d | ||
020 | |a 9783662553503 |c Online |9 978-3-662-55350-3 | ||
024 | 7 | |a 10.1007/978-3-662-55350-3 |2 doi | |
035 | |a (ZDB-2-SMA)9783662553503 | ||
035 | |a (OCoLC)1005514900 | ||
035 | |a (DE-599)BVBBV044529726 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-523 |a DE-703 |a DE-863 |a DE-20 |a DE-739 |a DE-634 |a DE-862 |a DE-824 |a DE-188 | ||
082 | 0 | |a 512.44 |2 23 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 149f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 135f |2 stub | ||
100 | 1 | |a Freudenburg, Gene |e Verfasser |0 (DE-588)1141795884 |4 aut | |
245 | 1 | 0 | |a Algebraic theory of locally nilpotent derivations |c Gene Freudenburg |
250 | |a Second edition | ||
264 | 1 | |a Berlin |b Springer |c [2017] | |
300 | |a 1 Online-Ressource (XXII, 319 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of mathematical sciences |v 136 |x 0938-0396 | |
490 | 1 | |a Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups |v 7 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic geometry | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Commutative rings | |
650 | 4 | |a Topological groups | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Derivation |g Algebra |0 (DE-588)4134656-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Derivation |g Algebra |0 (DE-588)4134656-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-662-55348-0 |
830 | 0 | |a Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups |v 7 |w (DE-604)BV036597991 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-55350-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2017 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029929026 | ||
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-55350-3 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 658788 |
---|---|
_version_ | 1806182007101718528 |
any_adam_object | |
author | Freudenburg, Gene |
author_GND | (DE-588)1141795884 |
author_facet | Freudenburg, Gene |
author_role | aut |
author_sort | Freudenburg, Gene |
author_variant | g f gf |
building | Verbundindex |
bvnumber | BV044529726 |
classification_rvk | SK 260 SK 340 |
classification_tum | MAT 149f MAT 000 MAT 135f |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783662553503 (OCoLC)1005514900 (DE-599)BVBBV044529726 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-55350-3 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03408nmm a2200757zcb4500</leader><controlfield tag="001">BV044529726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171010s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662553503</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-55350-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-55350-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783662553503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005514900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044529726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 149f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 135f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freudenburg, Gene</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1141795884</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic theory of locally nilpotent derivations</subfield><subfield code="c">Gene Freudenburg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 319 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">136</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups</subfield><subfield code="v">7</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Derivation</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4134656-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Derivation</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4134656-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-662-55348-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV036597991</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029929026</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044529726 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T12:49:50Z |
institution | BVB |
isbn | 9783662553503 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029929026 |
oclc_num | 1005514900 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-523 DE-703 DE-863 DE-BY-FWS DE-20 DE-739 DE-634 DE-862 DE-BY-FWS DE-824 DE-188 |
physical | 1 Online-Ressource (XXII, 319 Seiten) |
psigel | ZDB-2-SMA ZDB-2-SMA_2017 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups |
series2 | Encyclopaedia of mathematical sciences Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups |
spellingShingle | Freudenburg, Gene Algebraic theory of locally nilpotent derivations Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups Mathematics Algebraic geometry Commutative algebra Commutative rings Topological groups Lie groups Commutative Rings and Algebras Algebraic Geometry Topological Groups, Lie Groups Mathematik Derivation Algebra (DE-588)4134656-7 gnd |
subject_GND | (DE-588)4134656-7 |
title | Algebraic theory of locally nilpotent derivations |
title_auth | Algebraic theory of locally nilpotent derivations |
title_exact_search | Algebraic theory of locally nilpotent derivations |
title_full | Algebraic theory of locally nilpotent derivations Gene Freudenburg |
title_fullStr | Algebraic theory of locally nilpotent derivations Gene Freudenburg |
title_full_unstemmed | Algebraic theory of locally nilpotent derivations Gene Freudenburg |
title_short | Algebraic theory of locally nilpotent derivations |
title_sort | algebraic theory of locally nilpotent derivations |
topic | Mathematics Algebraic geometry Commutative algebra Commutative rings Topological groups Lie groups Commutative Rings and Algebras Algebraic Geometry Topological Groups, Lie Groups Mathematik Derivation Algebra (DE-588)4134656-7 gnd |
topic_facet | Mathematics Algebraic geometry Commutative algebra Commutative rings Topological groups Lie groups Commutative Rings and Algebras Algebraic Geometry Topological Groups, Lie Groups Mathematik Derivation Algebra |
url | https://doi.org/10.1007/978-3-662-55350-3 |
volume_link | (DE-604)BV036597991 |
work_keys_str_mv | AT freudenburggene algebraictheoryoflocallynilpotentderivations |