Symmetry, phase modulation, and nonlinear waves:
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
31 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 Volltext |
Zusammenfassung: | Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications |
Beschreibung: | Title from publisher's bibliographic system (viewed on 07 Jul 2017) |
Beschreibung: | 1 online resource (ix, 228 pages) |
ISBN: | 9781316986769 |
DOI: | 10.1017/9781316986769 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044464054 | ||
003 | DE-604 | ||
005 | 20220225 | ||
007 | cr|uuu---uuuuu | ||
008 | 170828s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781316986769 |9 978-1-316-98676-9 | ||
024 | 7 | |a 10.1017/9781316986769 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316986769 | ||
035 | |a (OCoLC)995163200 | ||
035 | |a (DE-599)BVBBV044464054 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 531/.11330151535 | |
100 | 1 | |a Bridges, Thomas J. |d 1955- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetry, phase modulation, and nonlinear waves |c Thomas J. Bridges, University of Surrey |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource (ix, 228 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 31 | |
500 | |a Title from publisher's bibliographic system (viewed on 07 Jul 2017) | ||
520 | |a Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications | ||
650 | 4 | |a Nonlinear wave equations | |
650 | 4 | |a Nonlinear waves | |
650 | 4 | |a Phase modulation | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-18884-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316986769 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029864660 | ||
966 | e | |u https://doi.org/10.1017/9781316986769 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316986769 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316986769 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177791936102401 |
---|---|
any_adam_object | |
author | Bridges, Thomas J. 1955- |
author_facet | Bridges, Thomas J. 1955- |
author_role | aut |
author_sort | Bridges, Thomas J. 1955- |
author_variant | t j b tj tjb |
building | Verbundindex |
bvnumber | BV044464054 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316986769 (OCoLC)995163200 (DE-599)BVBBV044464054 |
dewey-full | 531/.11330151535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.11330151535 |
dewey-search | 531/.11330151535 |
dewey-sort | 3531 1111330151535 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/9781316986769 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02641nmm a2200433zcb4500</leader><controlfield tag="001">BV044464054</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220225 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170828s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316986769</subfield><subfield code="9">978-1-316-98676-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316986769</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316986769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)995163200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044464054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.11330151535</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bridges, Thomas J.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry, phase modulation, and nonlinear waves</subfield><subfield code="c">Thomas J. Bridges, University of Surrey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 228 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">31</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 07 Jul 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear wave equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase modulation</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-18884-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316986769</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029864660</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316986769</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316986769</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316986769</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044464054 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:53:40Z |
institution | BVB |
isbn | 9781316986769 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029864660 |
oclc_num | 995163200 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 online resource (ix, 228 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO_Kauf ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Bridges, Thomas J. 1955- Verfasser aut Symmetry, phase modulation, and nonlinear waves Thomas J. Bridges, University of Surrey Cambridge Cambridge University Press 2017 1 online resource (ix, 228 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 31 Title from publisher's bibliographic system (viewed on 07 Jul 2017) Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications Nonlinear wave equations Nonlinear waves Phase modulation Erscheint auch als Druck-Ausgabe, hardback 978-1-107-18884-6 https://doi.org/10.1017/9781316986769 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Bridges, Thomas J. 1955- Symmetry, phase modulation, and nonlinear waves Nonlinear wave equations Nonlinear waves Phase modulation |
title | Symmetry, phase modulation, and nonlinear waves |
title_auth | Symmetry, phase modulation, and nonlinear waves |
title_exact_search | Symmetry, phase modulation, and nonlinear waves |
title_full | Symmetry, phase modulation, and nonlinear waves Thomas J. Bridges, University of Surrey |
title_fullStr | Symmetry, phase modulation, and nonlinear waves Thomas J. Bridges, University of Surrey |
title_full_unstemmed | Symmetry, phase modulation, and nonlinear waves Thomas J. Bridges, University of Surrey |
title_short | Symmetry, phase modulation, and nonlinear waves |
title_sort | symmetry phase modulation and nonlinear waves |
topic | Nonlinear wave equations Nonlinear waves Phase modulation |
topic_facet | Nonlinear wave equations Nonlinear waves Phase modulation |
url | https://doi.org/10.1017/9781316986769 |
work_keys_str_mv | AT bridgesthomasj symmetryphasemodulationandnonlinearwaves |